

Table of Contents

1	Intr	oduction	1
2	Site	Description	1
	2.1	Topography and Surface Drainage	2
3	Site	Investigation Data	3
	3.1	Site Investigations	3
	3.2	Geological Setting	3
	3.3	Stratigraphy	3
	3.4	Groundwater	4
4	Nati	ural Hazard Assessment	5
	4.1	General	5
	4.2	Alluvial Fan Flooding and Debris Flow Hazards	5
	4.3	Landslide Hazards	6
	4.4	Seismic Hazard – Active Fault	6
	4.5	Liquefaction	6
	4.6	Historic Mining Activity	6
	4.7	Groundwater and Surface Drainage	7
5	Con	clusions and Recommendations	8
6	Ann	licability	8

1 Introduction

This report presents the results of an assessment and historic site investigations carried out by GeoSolve Ltd in the context of a proposed private plan change to incorporate a golf course to the proposed development. The objective is to assess the suitability of the subject area, in terms of geotechnical hazards, for the proposed plan change and new development.

2 Site Description

Figure 1: Locality Plan

The property is located on the western side of Cardrona Valley Rd (Figure 1), south of the existing Cardrona Skifield access road.

Access to the site is off the Cardrona Valley Road. Several structures currently exist in the eastern extents of the site, including remnants of the site's only farmhouse, sheds and a wool shed.

The site is covered in grassed paddocks and sparse scrub and trees. The Cardrona Skifield access runs beyond the northeast corner of the site. Several farm tracks and a driveway to the farmhouse site also exist.

The site has a predominantly easterly aspect.

October 2016

2.1 Topography and Surface Drainage

The site has been surveyed and topographic contours are shown in Appendix A.

The site topography can be generalised as a gently sloping (~5-10°) alluvial fan surface.

Upslope and west of the main fan surface is a pronounced increase in gradient (slopes of up to 25°) which coincides roughly with the alignment of the Cardrona Water Race. This escarpment is considered to be a geomorphological expression of the NW Cardrona Fault Zone. A second water race (Little's Water Race) follows the approximate level of the 610 m contour and bisects the terrace surface.

The alluvial fan surface has been offset by the NW Cardrona Fault Zone, and upslope of the escarpment has a similar orientation and slope as the fan surface below. A minor ephemeral creek dissects the upper escarpment, and is directed down the escarpment and over the lower terrace surface (swampy in places) before joining with a small creek.

The southwest margin of the site area is aligned with part of Pringles Creek, a major watercourse that has caused considerable incision of the terrace surface. The valley slopes of Pringles Creek are moderate to steep (up to 35°).

The eastern boundary of the site area adjoins Cardrona Valley Road and corresponds to a steep slope (~35°) that represents an erosional terrace edge formed by the Cardrona River. This has subsequently been partially modified by quarrying activity adjacent to Cardrona Valley Road.

The development area (as shown in Figure 1, Appendix A) is a gently sloping alluvial fan surface that is relatively unmodified by incision. It is essentially a planar topographical feature that slopes at a gentle grade (~5-10°) to the east with minor undulations resulting from eastward flowing ephemeral drainage paths. These would be expected to act as overland flow paths only during periods of extended heavy rainfall.

The fan surface has been incised by two significant creeks beyond the site proximity. North of the site Homestead Creek flows in a west to east direction. In its lower reaches constitutes a subhorizontal, swampy valley floor with a slight inclination towards the east. The upper reaches of the creek have an increased gradient and some flow was observed. Homestead Creek has caused incision of the alluvial fan terrace and the resulting valley sides slope at around 20° adjacent to the northern boundary of the development area. Similarly, Pringles Creek has incised the fan surface towards the southwest of the site.

3 Site Investigation Data

3.1 Site Investigations

Sufficient subsurface investigations have been undertaken to ascertain the required information for the purposes of the plan change report.

Site investigations have included the excavation of twenty-nine test pits to a maximum depth of 5 m. A number of these test pits cover the proposed development area.

An engineering geological appraisal has also been undertaken to assess geomorphology and surface conditions. Geomorphological mapping was completed, including outcrop mapping of the exposed soil materials (see Figure 2, Appendix A).

Scala penetrometer tests were undertaken to determine strength parameters for the subsurface soils. Test results are contained in Appendix B.

Locations of test pits are shown in Figure 1, Appendix A. All test pit logs are contained in Appendix B.

We understand that the Otago Regional Council has previously raised concerns about hazards associated with the Pringles Creek catchment and the Nevis Cardrona Fault Zone, and that these aspects have been investigated independently by Royden Thomson, Geologist (Appendix C).

3.2 Geological Setting

The regional basement rock comprises the ice-scoured Haast Schist Group. Sedimentary cover consists of Early Quaternary outwash gravels overlain by alluvial fan deposits. More recent alluvial sediments have been deposited from the Cardrona River and smaller local watercourses. The alluvial deposits have been eroded and deposited during post-glacial times.

Published geological maps show the Nevis-Cardrona Fault in close proximity to the west of the site but it does not traverse the plan change area. This fault is considered to be positioned upslope of the water race. The Nevis-Cardrona Fault is a major active fault system with a reverse sense of movement and a 5,000-10,000 year recurrence interval. The date of the most recent surface rupture has not been established but field investigations found no evidence to suggest any recent movement locally. A report by Mr Royden Thomson (Geologist) also found no evidence that the alluvial fan has been tectonically deformed since its formation (assessed as 23,000 years before present).

A more significant seismic risk exists in this district from potentially strong ground shaking, likely to be associated with a rupture of the Alpine Fault, located along the West Coast of the South Island.

There is a high probability that an earthquake with an expected magnitude of over 7.5 will occur along the Alpine Fault within the next 50 years, which will subject the site area to strong, prolonged ground shaking.

3.3 Stratigraphy

The plan change area is situated on a large alluvial fan surface with only minor modification to the existing morphology by ephemeral stream activity. Consequently, alluvial deposits dominate the subsurface in this area with overlying surficial topsoil and loess.

The topsoil comprises soft brown organic silt.

The loess comprises firm silt with some loose fine sand. Loess was typically observed to depths no greater than 0.5 m, however in one location loess was observed to 1.1 m indicating that pockets of deeper loess may be locally present on the terrace.

October 2016

The alluvial fan deposits are typical of such environments of deposition and comprise interbedded fine and coarse-grained alluvium. The following soil types are represented within the interbedded sequence:

Alluvial silt and sand – firm to very stiff silt with rare to some clay, silt with minor gravel and gravelly pockets, firm to stiff/loose to medium dense silty fine sand, gravelly silt with minor sand, sandy silt, etc.

Alluvial gravel – medium dense to dense sandy gravel with cobbles and boulders, silty gravel with minor cobbles, dense large boulders in a silt matrix with lenses of silty gravels, etc.

Additional stratigraphic data was obtained from engineering geological mapping. A gravel quarry situated on the eroded margins of the alluvial fan northeast of the Golf Course Villas observed sandy, fine to coarse gravel with minor silt and rare boulders composed of angular to sub-angular schist and quartz.

Further detailed description of the alluvial fan deposits can be obtained in the test pit logs contained in Appendix B.

3.4 Groundwater

Test pits observed that the alluvial terrace deposits are generally in a moist condition with no seepage (i.e. percolation of water through soil).

Some seepage was noted on the ground surface and in test pits (TP 26 & 27), excavated near the base of the upper escarpment. Seepage is occurring on the face of the escarpment and is probably related to the proximity of the Nevis-Cardrona Fault.

The static watertable is likely to be at depth (15 m+) in the development area. However, local surface seepages have been observed as above.

4 Natural Hazard Assessment

4.1 General

Current QLDC and ORC mapping identifies alluvial fan hazard and active faulting hazards within and near the proposed site area (Figure 3, Appendix A). Detailed geological mapping has also identified shallow landslide and mining hazards in the site area (Figure 2, Appendix A).

Owing to the terrain and the site location, it is appropriate to assess for a range of geotechnical hazards including landslide, liquefaction, erosion, debris flow, and flooding.

A site inspection and mapping was undertaken with relevant features observed and mapped (Figure 2, Appendix A).

4.2 Alluvial Fan Flooding and Debris Flow Hazards

Watercourses run either side of the site, Pringles Creek to the south and the smaller Homestead Creek to the north, with catchment areas of 435 ha and 86 ha and estimated (NIWA) 100-year flows of 4.6 m³/s and 1.8 m³/s respectively. Two small artificial water races traverse the upper site, flowing from north to south.

The modern watercourses are well incised, with the site generally elevated by at least 5 to 10 m above the streambeds. The channels are hydraulically steep and it is estimated that Pringles Creek can convey its 100 year flow at a typical depth of about 1 m. Thus, it is clear that there is negligible probability of storm runoff alone causing flooding onto the site from these streams. However, the possibility must be addressed of debris events causing channel avulsion, which might direct floodwater and debris onto the site. The site is shown as 'stabilised/isolated' and 'inactive' alluvial fan in ORC/QLDC hazard mapping. This classification is supported by observed alluvial fan deposits underlying most of the site; these are ancient as indicated by overlying horizons of loess and topsoil.

Royden Thomson, Geologist (June 2006 report attached as Appendix C) has undertaken a comprehensive geological and hydrological investigation into this site with particular reference to alluvial fan hazards including debris flow. Thomson concluded that the fan surface has last experienced alluvial activity approximately 23,000 years ago under a substantially different geological setting than that of today. Thomson notes "...the major 1999 storm event had no significant influence on the active channel and no impact at all... downstream from the Skifield Road crossing. It can be assumed, therefore, that... no debris flows were generated... existing landslides are not particularly susceptible..."

Thomson also references an ORC assessment (April 2006) which involved modelling of a dam break scenario for a proposed snow making pond associated with the Cardrona Skifield in the upstream catchment. Based on the ORC results and his own interpretation, Thomson concludes that in this vicinity: "A worst case scenario would generate a maximum flood/debris flow level 2m above the channel thalweg... When the overall channel dimensions are considered this is a negligible impact... No incursion onto the flood plain is depicted... The risk of channel overtopping and stream avulsion on the left bank is considered to be effectively zero..."

Thomson's work is considered thorough and his conclusions robust, therefore our position is that there is negligible risk to the site from flooding and debris flow.

Small seepages and locally sourced runoff may affect the site; these will be minor and easily addressed with local drainage arrangements.

October 2016

4.3 Landslide Hazards

Geological mapping has identified active landslides on steeper slopes north and south of Homestead Creek and on the face of the upper escarpment west of the proposed development area (see Figure 2, Appendix A).

These are considered to be slowly creeping slides, probably developed in underlying Early Quaternary Gravels. Movement appears to be associated with groundwater seepages.

It is recommended that development be avoided in these areas, and that detailed landslide investigations be carried out for any proposed developments in their immediate vicinity.

4.4 Seismic Hazard – Active Fault

This issue has been addressed in detail in a report by Royden Thomson (Appendix C).

A north/south trending active fault scarp associated with the Northwest Cardrona Fault has been identified crossing the upper escarpment west of the proposed development area (see Thomson, Figure 3a, Appendix C). It has undergone multiple phases of movement in the past 140,000 years, and has an uncertain relationship with the Northwest Cardrona Fault. The timing of the last movement is unknown.

The average return period on the NW Cardrona Fault is in the range of 5,000-10,000 years. It is recommended that development be avoided in the immediate vicinity of the fault scarp shown on the Thomson Figure 3a, Appendix C.

4.5 Liquefaction

Seismic liquefaction occurs when excess pore pressures are generated in loose, saturated, generally cohesionless soil during earthquake shaking, causing the soil to undergo a partial to complete loss of shear strength. Such a loss of shear strength can result in settlement and/or horizontal movement (lateral spreading) of the soil mass. The occurrence of liquefaction is dependent on several factors, including the intensity and duration of ground shaking, soil density, particle size distribution, and elevation of the groundwater table.

Within this site, the potential for liquefaction under seismic shaking is considered relatively low. The vulnerable combination of fine grained sandy/silty soils with a shallow groundwater table is unlikely to be extensive within the development area. The low liquefaction risk is due to the combination of a deep static water table and coarse granular deposits associated with the alluvial fan deposits.

Investigations to confirm soil type and groundwater depths will be required at detailed design phase to assess foundation options.

4.6 Historic Mining Activity

A gold mining tunnel hosted by Early Quaternary Gravel was observed northeast of the Golf Course Villas (see Figure 2, Appendix A). There is a possibility that further tunnels are present as the interface between the Early Quaternary Gravel and the overlying alluvial fan deposits was a widely targeted gold-bearing horizon during the gold rush era. The tunnels are however likely to be of limited length (perhaps 10 m maximum) and restricted to the incised margins of the fan deposits. Tunnels are therefore not expected to present any geotechnical concerns for the plan change area (subject to localised verification and checking of final plans).

The mining tunnel east of the Golf Course Villas will need to be traced to confirm its extent (including any drives that feed from it). If construction is proposed in the tunnel the area it should be

October 2016

backfilled to the required foundation level using suitable engineered fill placed in accordance with NZS 4431:1989.

4.7 Groundwater and Surface Drainage

Good natural drainage of the development area is expected and no major remedial drainage measures are expected. If future development extends to the vicinity of the upper escarpment drainage will be required.

If groundwater or springs are identified during construction, then subsoil drainage or similar remediation will be required.

Flow within ephemeral watercourses in the development area is expected in times of high rainfall and consequently cut off drains upslope of the development is recommended.

October 2016

5 Conclusions and Recommendations

Based on this preliminary assessment, the majority of the site is considered to be acceptably safe from geotechnical hazards. A minor level of geotechnical hazard may be present at isolated locations within the proposed development area, and site-specific investigation will be required to assess building platform locations. However, we consider that the extent and degree of any such hazards will be minor, such that they can be readily mitigated by standard planning and engineering measures.

We conclude that, from a natural hazards perspective, the area is suitable for the proposed land use; noting that site-specific assessments will be required and localised mitigation measures may be necessary.

6 Applicability

This report has been prepared for the benefit of Brown and Company Planning Group with respect to the particular brief given to us and it may not be relied upon in other contexts or for any other purpose without our prior review and agreement.

Further geotechnical investigations and reporting will be required at the detailed design phase after development plans are completed.

Report prepared by:	
Ustoci	Graene Helliday
Hank Stocker Senior Engineer	Graeme Halliday Senior Engineering Geologist
Reviewed for GeoSolve Ltd by:	
Flille	
Fraser Wilson Senior Engineering Geologist	

Appendix A: Site Plans

- Figure 1 Site Investigation Plan
- Figure 2 Geological Site Plan
- Figure 3 QLDC Hazard Map
- Figure 4 Aerial Site Plan
- Figure 5 and 6 Site Photos

= Active Fault - Location Approximate

= Alluvial Fan, Inactive Composite (Regional Scale)

= Alluvial Fan, Active Composite (Regional Scale)

CTECHNICAL ENGINEERING • GEOHVICTOLOGY & HVDROLOGY ENGINEERING GEOLOGY • PRIVEMENT STRUCTURAL TESTING 70 Macandrew Road, PO Box 2427, South Dunedin 9044. ph 03 466 4024

DRAWN	GSH	10/16
DRAFTING CHECKED	FAW	10/16
APPROVED	FAW	10/16
FILE : PDF		

FILE:
PDF
SCALE: (AT A3 SIZE)
As Shown
PROJECT No.
160677

Appendix A- Figure 3

BROWN AND COMPANY PLANNING GROUP Geotechnical Assessment Mt Cardrona Station Plan Change QLDC Hazard Map

REV. 0

Scale 1:8500 200

GEOTECHNICAL ENGINEERING * GEOHYDROLOGY & HYDROLOGY ENGINEERING GEOLOGY + PAVEMENT STRUCTURAL TESTING 70 Macandrew Road, PO Box 2427, South Dunedin 9044. ph 03 466 4024

As Shown
PROJECT No.
160677

Geotechnical Assessment
Mt Cardrona Plan Change
Aerial Site Plan

Appendix A - Figure 4

REV. 0

Appendix B: Test Pit Logs and Scala Penetrometer Logs

EXCAVATION NUMBER:

			Mt Cardro			Teulinesia			Job Number: 160677	
			see site			Inclination			Direction: N/A	_
NORTHING: 5586114 mN I ELEVATION: see site map m I					EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:			ANY:	Workable Earth 25-Aug-05	
			die etc	ENGINEER	RING DESCRIPTION				GEOLOGICAL	_
PENELING ININ (SPL)	GROUNDWATER / SEEPAGE	DEPTH (m)	GRAPHIC LOG	SOIL PAR WEATHER	WATER CONTENT	SOIL / ROCK TYPE, ORIG MINERAL COMPOSITIO DEFECTS, STRUCTURE FORMATION	N			
- 6.0		0.4	\times	Brown, organic SILT wi dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	e profile that	moist	TOPSOIL	
		0.8	$\stackrel{\times}{\sim}$	Tan brown, SILT with r Uniform, stiff. Parallel t			fine to medium.	moist	LOESS	
	==	1.2	\times	Brown, gravelly SILT w fine to coarse, clasts ar southeast.			Control of the second second second second	itton of	ALLUVIAL DEPOSIT	
		1.6	\propto					saturated at position of		
H	-	2.0	×××					wet, saturate		
3	•	2.4	$\stackrel{\times}{\times}$	Grey brown, silty SAND coarse, gravel is fine to subrounded. Poorly gra	coarse, boulders to 30	Omm, clasts are sub		moist	GLACIAL TILL	-
		3.2	×	Grey brown, silty SAND to gravel is fine. Poorly grade				moist	GLACIAL POND SEDIMENT	
		3.6 4.0	0.00	Red, brown with black, sar coarse, gravel is fine to co highly weathered. Well gra	arse, boulders to 250mm,	clasts are metasedimer	nt dominant,	wet	EARLY QUATERNARY GRAVEL	
		4.4				Te	otal Depth = 4 m			
		4.8								
		5.2								
		5.6								
	1	6.0								

COMMENT: Minor seepage @ 2m-2.4m, 20L pooled in the base of the test pit after 10 mins	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

			see site			Inclination:	see site map	•	Direction: N/A	
	NO ELE	ASTING: RTHING: VATION: VETHOD:		2195313 mE 5586227 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERA COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 25-Aug-05	
				ENGINEER	ING DESCRIPTION	and the same of th			GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DЕРТН (m)	GRAPHIC LOG	SOIL PART WEATHER	WATER CONTENT	SOIL / ROCK TYPE, OF MINERAL COMPOSIT DEFECTS, STRUCTU FORMATION	ION,			
		0.4	$\stackrel{\times}{\times}$	Brown, organic STLT with rare roots. Uniform, soft. Parallel to slope profile that dips slightly to the east.	moist	TOPSOIL	E			
	4	0.8	$\langle \times \rangle$	SILT with some sand. S slightly to the east.	and is fine. Uniform, fi	rm. Parallel to slope p	profile that dips	moist	LOESS	E
	577	1.6	$\stackrel{\times}{\times}$	Tan brown, SILT with m sub-angular to sub-rour slightly to the east.				moist	GLACIAL TILL	
		2.4	0X: X:>	Tan brown with orange Sand is fine, gravel is f to angular, sub-rounde very dense. Dips slight	ne to medium, slightly I to sub-angular schist	weathered, clasts are	sub-rounded	slightly moist	EARLY QUATERNARY GRAVEL	
	NO SEEPAGE	3.2	οΧ: Χ:Χ Χ	Tan brown, silty GRAVE gravel is fine to coarse, metasediment dominant slightly to the east.	cobbles to 150mm, cla	ests are sub-rounded	to sub-angular,	slightly moist	EARLY QUATERNARY GRAVEL	
	1	4.0				Tota	Depth = 3.9 m		7	_
		4.4	-							E
		4.8	-							
		5.2								
		6.0								
		6.4								

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

			see site			Inclination:	see site mag	-	Direction: N/A	
	NO ELE	ASTING RTHING VATION VETHOD		2195205 mE 5586091 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:	-	OPERA COMP HOLE STAR HOLE FINIS	ANY:	Workable Earth 25-Aug-05	
				ENGINEER	ING DESCRIPTION	N GEOLOGICA				
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEРТН (m)							SOIL / ROCK TYPE, OR MINERAL COMPOSITI DEFECTS, STRUCTUR FORMATION	ON,
		0.4	\times	Brown, organic SILT wit dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	moist	TOPSOIL	E
	3 -	1.2	$\stackrel{\sim}{\sim}$	SILT with some sand. S slightly to the east.	and is fine. Uniform, fi	rm. Parallel to slope p	rofile that dips	moist	LOESS	
		1.6	0 × × × × × × × × × × × × × × × × × × ×	øX,	Tan brown with grange tinge, s weathered, clasts are sub-round graded, dense. Dips slightly to t	ded to angular, sub-rounded to	Sand is fine, gravel is fine to o sub-angular schist boulders	medium, moderately to 700mm. Poorty	slightly	EARLY QUATERNARY GRAVEL
	35	2.4		Tan brown, silty GRAVE coarse, gravel is fine to angular, metasediment Dips slightly to the east	coarse, cobbles to 150 dominant, moderately	mm, clasts are sub-ro	ounded to sub-	slightly moist	EARLY QUATERNARY GRAVEL	
	NO SEEPAGE	3.2	0	Tan brown, GRAVEL wit is fine to coarse, clasts moderately weathered.	are sub-rounded to su	b-angular, metasedim	ent dominant,	slightly	EARLY QUATERNARY GRAVEL	-
		7.7	1			Tota	Depth = 3.6 m			E
		4.0	1 1							E
		4.4								E
		4.8								-
		5.2								
		5.6	-							\parallel
	3	6.0								H
		6.4								\perp

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

			Mt Cardro						Job Number: 160677	
	LC	CATION	see site	map		Inclination:	see site map		Direction: N/A	
	NO ELE	EASTING RTHING EVATION METHOD		2195280 mE 5585859 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERAT COMPA HOLE START HOLE FINISH	ANY:	Workable Earth 25-Aug-05	
			um etc	ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	SOIL / ROCK CLASSIFICATION, PLASTICITY OR PARTICLE SIZE CHARACTERISTICS, COLOUR, WEATHERING, SECONDARY AND MINOR COMPONENTS							SOIL / ROCK TYPE, ORI MINERAL COMPOSITION DEFECTS, STRUCTUR FORMATION	IN,
-			Ym X	Brown, organic SET with some			gravel is fine.		TOPSOIL	\pm
	3	0.4		Poorly graded, loose. Sub-paral Grey/brown, sandy GRA coarse, gravel is fine to 300mm, clasts are schis slope profile that dips to	VEL with minor cobble coarse, clasts are sub- it dominant. Well grade	s and boulders. Sand i	ar, boulders to		ALLUVIAL FAN GRAVEL	
	8	1.2	000					142		E
	:3	1.6					moist			
	- 10	2.0	20							-
	-	2.4	06 0 0							E
13	-	2.8	66						2,6	-
	3	3.2		Sand is fine to coarse,	ey to tan/brown, GRAVEL with some sand and minor silt and minor cobbles. nd is fine to coarse, gravel is fine to coarse, cobbles to 150mm, metasediment minant, moderately weathered. Poorly graded, dense. Dips slightly to the west.			wet, saburated at water level	EARLY QUATERNARY GRAVEL	=
	3	3.6	08-0 08-0					wet, sat		=
		4.0				Total	Depth = 3.8 m			E
	- 1	4.4								
	12	4.8								
	1	5.2								H
		5.6	-							\vdash
	3	6.0								\vdash
		6.4							u .	

COMMENT: seepage @ 2.7m, fast seepage, water pouring in at 30L/min	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

TP 5A

			west of			Inclination:	see site map	_	Direction: N/A										
	NO ELE	ASTING: RTHING: VATION: METHOD:		2195244 mE 5585762 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERAT COMP/ HOLE START HOLE FINISH	ANY: TED:	Workable Earth 25-Aug-05										
			de els	ENGINEER	ING DESCRIPTION				GEOLOGICAL										
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEРТН (m)	GRAPHIC LOG	SOIL / ROCK CLASSIFICATION, PLASTICITY OR SOIL PARTICLE SIZE CHARACTERISTICS, COLOUR, WEATHERING, SECONDARY AND MINOR COMPONENTS						ON,									
		0.4	\times	Brown, organic SILT with s gravel is fine. Poorly graded	d, loose. Sub-parallel to s	lope profile that dips to	the east.		TOPSOIL	E									
	9	0.8	0.00	Light brown, sity sandy is fine to coarse, cobbler 0.7 medium dense, 0.7-	s to 200mm, moderate				EARLY QUATERNARY GRAVEL	E									
	32	1.2	06°0	6. 6.						E									
	SEEPAGE	1.6	D 0000																
		2.0		00.0							E								
		2.4			000	0.0	0.0	0.0	0.0							E			
	NO SEB	3.2													Ö	7	0		Ö
		3.6	-			Tota	Depth = 3.2 m												
		3.6								E									
		4.0								H									
	- 1	4.4							H										
	3	4.8									H								
	3	5.2								H									
	i i	5.6								H									
	3	6.0	-							H									
		6.4								Ш									

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

TP 5B

	PROJECT				L SAME CAN			lob Number: 160877	
LC	OCATION	east of	pit		Inclination:	see site map		Direction: N/A	
NC ELE	EASTING DRTHING EVATION METHOD		2195244 mE 5585762 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERAT COMPA HOLE START HOLE FINISH	NY: ED:	Workable Earth 25-Aug-05	
70 - V			ENGINEER	RING DESCRIPTION		- Transition of the contract o		GEOLOGICAL	
GROUNDWATER / SEEPAGE	DEPTH (m)	GRAPHIC LOG	PART	/ ROCK CLASSIFICATION FIGLE SIZE CHARACTER RING, SECONDARY AND	RISTICS, COLOUR,	īS	WATER CONTENT	SOIL / ROCK TYPE, OR MINERAL COMPOSITI DEFECTS, STRUCTUI FORMATION	ON,
	0.2	$\stackrel{\times}{\sim}$	Brown, organic SILT wi Sand is fine, gravel is fi dips to the east.					TOPSOIL	
	0.4	\times							
	0.6	000	Grey, sandy GRAVEL wi Sand is fine coarse, gra to medium dense, fretti loose gravel. Wedge of	vel is fine to coarse, boing, stands poorly in lo	oulders to 1m. Poorly calised zones due to b	graded, loose		CARDRONA ALLUVIAL DEPOSIT	district contract
	0.8	46 A	-						
	1.0	9							
8	1.2								
	1.4	440							
	1.6	66.0							
	1.8	(J.)		Light brown, silty sandy GRAVEL with minor cobbles. Sand is fine to coarse, gravel is fine to coarse, cobbles to 200mm, moderately weathered. Poorly graded, 0.4-					
	2.0	0.0				EARLY QUATERNARY GRAVEL			
8	2.2	200	0.7 medium dense, 0.7						
	2,4	00.0							
3	2.5	7.							
AGE.	2.8								
NO SEEPAGE	3.0	őg ő							
55.75	3.2	200			Tota	Depth = 3.1 m	_		_
	3.2					a span		57	

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

			Mt Cardro see site			Inclination:	see site map		Job Number: 160677 Direction: N/A	
	NO ELE	ASTING: RTHING: VATION: METHOD:		2195240 mE 5585891 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERAT COMPA HOLE START HOLE FINISH	ANY:	Workable Earth 25-Aug-05	
			- 4	ENGINEER	RING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEPTH (m)	GRAPHIC LOG	PART	/ ROCK CLASSIFICATI TICLE SIZE CHARACTE RING, SECONDARY AND	RISTICS, COLOUR,	rs	WATER CONTENT	SOIL / ROCK TYPE, ORI MINERAL COMPOSITION DEFECTS, STRUCTUR FORMATION	ON,
		0.2	$\stackrel{\sim}{\sim}$	Brown, organic STLT wi gravel is fine. Poorly gravest.					TOPSOIL	
		0.4	\times							_
	3	0.6	000	Sandy GRAVEL. Sand is medium dense. Dips sli		I is fine to medium. Po	oorly graded,	slightly	ALLUVIAL FAN GRAVEL	
		0.8	οX	White/brown, silty GRA Moderately weathered,					EARLY QUATERNARY GRAVEL	1
		1.0	X.3X	graded, medium dense		ne boulder de 114 in 31	ce. Posity		GWYLL	
		1.2	% X°X							F
		1.4	5X							F
		1.6	×.×							Ė
		1.8	ð•Xð							Ė
		2.0	X					dry		E
		2.2	oX.							Ē
		2.4								
		2.6	KeX							
	AGE.	2.8	οΧ							
	NO SEEPAGE	3.0	X. X							
	-	3.2	1200			Total	Depth = 3.1 m			+

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

	F	ROJECT:	Mt Cardror	na Station		L SAME TAKE			Job Number: 160677	
	LO	CATION:	see site i	nap		Inclination:	see site map		Direction: N/A	
	NO ELE	EASTING: PRTHING: EVATION: METHOD:		2195159 mE 5586004 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERAT COMPA HOLE START HOLE FINISH	ANY:	Workable Earth 25-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEPTH (m)	GRAPHIC LOG	PART	/ ROCK CLASSIFICATION TICLE SIZE CHARACTEI ING, SECONDARY AND	RISTICS, COLOUR,	īS	WATER CONTENT	SOIL / ROCK TYPE, OR MINERAL COMPOSITI DEFECTS, STRUCTUI FORMATION	ON,
- 1			YUY	Brown, organic SILT with rank n	nots, Uniform, soft. Parallel to	slope profile that dips to the			TOPSOIL	-
		0.2	1500	Light brown, silty SAND	with rare gravel. Sand	is fine, gravel is fine	. Uniform, soft	mois	FILL	-
	9	0.4		to firm. Sub-parallel to s Dark brown, organic SII fine, gravel is fine. Unifo	slope profile that dips t T with minor sand and	o the east. I gravel and minor ro	ots. Sand is	moist	BURIED TOPSOIL	=
	3	1.0	XX	SILT with some sand. S profile that dips to the e	The state of the s	rm to stiff. Sub-parall	el to slope	moist	LOESS	-
	-	1.2	0.00	Grey, sandy GRAVEL. Sand dense. Sub-parallel to slope	is fine to coarse, gravel is a profile that dips to the e	s fine. Poorly graded, lo last,	ose to medium	wet	ALLUVIAL DEPOSIT	F
		1.6		Grey/brown, SAND with parallel to slope profile		to medium. Uniform,	loose. Sub-	wet	ALLUVIAL DEPOSIT	
	•	2.0	$\overset{\times}{\times}$	Grey, sandy SILT with n parallel to slope profile		ne, gravel is fine. Uni	form, firm. Sub-	moist	ALLUVIAL DEPOSIT	Ē
		2.4	0.00	Blue/grey, sity sandy GRA\ gravel is fine to coarse, bot parallel to slope profile that	ulders to 300mm. Poorly (wet,	ALLIVIAL DEPOSIT	-
		2.5	$\stackrel{\times}{\times}$	Orange/brown, gravelly gravel is fine to coarse, medium dense to dense	SILT with rare cobbles cobbles to 200mm, mo				EARLY QUATERNARY DEPOSIT	-
	3	2.8	$\stackrel{\times}{\times}$					moist		
	3	3.0	\otimes			Toka	I Depth = 3.2 m			-

COMMENT: Seepage settled at 1.8m, filled bottom of test pit, perched water on top of the Early Quaternary	Logged By: FAW
Gravel	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

_			Mt Cardro see site			Inclination:	see site man	_	Direction: N/A	
	NO ELE	EASTING: RTHING: VATION: METHOD:		2195088 mE 5586065 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERA COMP HOLE STAR HOLE FINIS	ANY:	Workable Earth 25-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	B C C C C C C C C C C C C C C C C C C C					RISTICS, COLOUR,	iτs	WATER CONTENT	SOIL / ROCK TYPE, OR MINERAL COMPOSITI DEFECTS, STRUCTUR FORMATION	ON,
		0.2	\times	Brown, organic SILT will dips to the SE @ 5-10°.		soft. Parallel to slope	profile that	moist	TOPSOIL	Ε
		0.4	\times	SILT with minor sand. S to the SE @ 5-10°.	William William			moist	LOESS	E
	20	0.6	$\stackrel{\times}{\sim}$	Light blue, grey, mottle to medium, slightly wea Parallel to slope profile	thered. Poorly graded	medium dense, sligh			ALLUVIAL DEPOSITS	
-	-	0.8	\otimes							
		1.0	$\stackrel{\sim}{\otimes}$	Light brown, grey, mott					ALLUVIAL DEPOSITS	+
		1.4	X 9 X	gravel is fine to coarse, to slope profile that dip		orly graded, medium	dense. Parallel			-
	3	1.6	°\;° X°X							
		2.0		Orange brown, silty GR.	M/EI with some cand	and rara cobbles. Cana	d ic fine to		EARLY QUATERNARY	E
		2.2	*	coarse, gravel is fine to angular, metasediment Dips slightly to the east	coarse, cobbles to 150 dominant, moderately	Imm, clasts are sub-r	ounded to sub-		GRAVEL	Ē
		2.4	16X)					slightly moist		
		2.8	oX.					sight		
	3	3.0	X.9.X 16.X.1							
		3.2				Tota	Depth = 3.1 m	Ť		
		-	·			Tota	Denth = 3.2 m	-51	50	100

COMMENT: Minor seepage @ 0.8m, slow seep	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

TP 9

	P	ROJECT:	Mt Cardro	na Station		a secondario			Job Number: 160677	
			see site			Inclination:	see site map		Direction: N/A	
	NO	ASTING: RTHING: VATION: IETHOD:		2195021 mE 5585942 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERAT COMP/ HOLE STAR HOLE FINISH	ANY: TED:	Workable Earth 25-Aug-05	
			alia ed	ENGINEER	RING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEPTH (m)	GRAPHIC LOG	PART	/ ROCK CLASSIFICATIO TICLE SIZE CHARACTEI RING, SECONDARY AND	RISTICS, COLOUR,	s	WATER CONTENT	SOIL / ROCK TYPE, ORI MINERAL COMPOSITI DEFECTS, STRUCTUR FORMATION	ON,
			$K_{\!$	Brown, organic SILT wi dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	mols -	TOPSOIL	
	1	0.4	XX	50.7 with some sand. Sand is f	ine. Uniform, firm. Parallel to s	tope profile that dips slightly t	zs fifer event.		LOESS	⇉
	-	0.8	×× ××	Light blue, grey, mottle weathered. Poorly grad					ALLUVIAL DEPOSITS	
i		1.6	XX3	Light brown, orange, si	ty GRAVEL with rare sa	and. Sand is fine, grav	el is fine to	0	ALLUVIAL DEPOSITS	-
5	-	2.0	X = X	coarse, slightly weather				wet, saturated at		
		2.8	X	Orange brown, sandy SILT, Sand is fine. Very stiff. Sub-horizontal.		dry vo	ALLUVIAL DEPOSITS			
	- 2	3.2	$K \searrow X$					0		
		3.6	>X X • X	Tan brown, silty GRAVE gravel is fine to coarse, metasediment dominan slightly to the east.	cobbles to 150mm, cla	ists are sub-rounded t	o sub-angular,	ψp	EARLY QUATERNARY GRAVEL	
		4.0				Total	Depth = 3.8 m			
		4.4								
		4.8								
		5.2								
		5.6								
		6.0								
		6.4								
							Dooth - 2.2 m			

Total Depth = 3.2 m

COMMENT: Three minor seepages from 1-1.8m	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

	P	ROJECT:	Mt Cardro	na Station		u south-row			Job Number: 160677	
	LO	CATION:	see site	map		Inclination:	see site map		Direction: N/A	
	NOF	ASTING: RTHING: VATION: IETHOD:		2194900 mE 5585925 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:	-	OPERA COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 25-Aug-05	
-000				ENGINEER				GEOLOGICAL		
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEPTH (m)	GRAPHIC LOG	PART	/ ROCK CLASSIFICATIO FICLE SIZE CHARACTER RING, SECONDARY AND	RISTICS, COLOUR,	īS	SOIL / ROCK TYPE, ORI MINERAL COMPOSITION DEFECTS, STRUCTUR FORMATION		ION,
1			$K \subseteq X$	Brown, organic SILT wit dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	siom +	TOPSOIL	1
	+	0.4	KĴX	SILT with minor sand. S	Sand is fine. Uniform, fi	rm. Parallel to slope	profile that dips		LOESS	1
	1	0.8	$\mathbb{X}_{\times}^{\times}$	to the SE @ 5-10". Red/brown, SILT with s Sub-horizontal.	ome clay. Slightly weat	thered. Uniform, firm,	, slightly plastic.	wet	ALLUVIAL SILT	
		1.2	X_X	Blue/grey, SILT with so	me clay. Uniform, firm,	slightly plastic, Sub-	horizontal.	wet	ALLUVIAL SILT	7
	-	1.6	$\stackrel{\times \times}{\times} \times$	Grey, gravelly SILT with gravel is fine to coarse, horizontal.				inet	ALLUVIAL DEPOSITS	
	-	2.0	X	Blue/grey, gravefly sand graded, medium dense.		ravel is fine to coarse	. Poorty		ALLUVIAL DEPOSITS	
		2.4	$\stackrel{\sim}{\sim}$					wet		
	-	3.2	ž×,	Light brown, grey, mott gravel is fine to coarse,					ALLUVIAL DEPOSITS	1
	+	3.6	X.9.X 349.3 46.XA	horizontal.				wet		
	-	4.0	×92	Tan brown, sity GRAVEL with s cobbles to 150mm, clasts are si	vio-rounded to sub-angular, me	stasediment dominant, mode	erately weathered			
	1	4.4	200	Poorly graded, medium dense,	test pit sides slumping away w	ith seepage influence. Sub-h	onzontal,	wet	EARLY QUATERNARY GRAVEL	
		4.8				Tota	I Depth = 4.5 m			
		5.2	8							
		5.6								
		6.0	8							
		6.4				Tota	I Depth = 3.2 m		3.	
						100	section - 2.5 till			

COMMENT: Minor seepage from 4.3m PHOTO REF.: N/A	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

			see site			Inclination:	see site map		Direction: N/A	
	NO ELE	EASTING ORTHING EVATION METHOD		2194808 mE 5585901 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:	-	OPERA* COMPI HOLE STAR HOLE FINISI	ANY: TED:	Workable Earth 25-Aug-05	
			V //	ENGINEER	ING DESCRIPTION	ON GEOLÓGICAL				
PENETRATION (SPT)	CRAPHIC LOG SOIL / SOCK CLASSIFICATION, PLASTICITY OR PARTICLE SIZE CHARACTERISTICS, COLOUR, WEATHERING, SECONDARY AND MINOR COMPONEN WEATHERING, SECONDARY AND MINOR COMPONEN						WATER CONTENT	SOIL / ROCK TYPE, ORIG MINERAL COMPOSITIO DEFECTS, STRUCTURI FORMATION	IN,	
			K. X	Brown, organic SILT with trinor				_	TOPSOIL	-
		0.4	X_X	Brown, organic SILT with profile that dips to the e		el. Uniform, soft. Pari	allel to slope	HOIS +	TOPSOIL	H
	98	0.8	$\stackrel{\sim}{\sim}$	profile that dips to the east. Tan/brown, gravelly SILT with some sand. Sand is fine, gravel is fine to medium. Poorly graded, medium dense. Dips 5° to NE, thickens to the south with the slope angle. Light brown, sandy GRAVEL with minor cobbles and silt. Sand is fine to coarse,	T with some sand. San				ALLUVIAL FAN DEPOSIT	Ē
	- 8	1.2	1		-	ALLUVIAL FAN GRAVEL	+			
		1.6	200	gravel is fine to coarse, rounded to angular. We Dips slightly to the NE.	cobbles to 200mm, ck	nt, sub-		ALLOVIAL PAR GRAVEL	E	
		2.0	08°0	orps signey to the NE.						=
		2.4	0							F
	1	2.8	500							E
	- 2	3.2	Ago A							E
	SEEPAGE	3.6	06.0							=
	NO SE	4.0								E
	- 2	4.0	37533			Total Depth = 4 m				-
	8	4.4					over the second second of the second of the second			
	- 2	4.8								-
	3	5.2								-
		5.6								Ц
		6.0								Ш
		6.4								

COMMENT: PHOTO REF.: N/A	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

			see site			Inclination:	see site map	_	Direction: N/A	
	NO ELE	ASTING RTHING VATION METHOD		2194700 mE 5585884 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:	-	OPERA* COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 25-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DЕРТН (m)	GRAPHIC LOG	PART WEATHER	/ ROCK CLASSIFICATION FIGLE SIZE CHARACTE RING, SECONDARY AND	RISTICS, COLOUR, MINOR COMPONEN		WATER CONTENT	SOIL / ROCK TYPE, ORIG MINERAL COMPOSITIO DEFECTS, STRUCTURE FORMATION	N,
		0.4	\times	Brown, organic SILT wit dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	moist	TOPSOIL	E
	3	0.8	$\stackrel{\times}{\times}$	SILT with some sand. Sand is fine. Uniform, firm. Sub-horizontal.					LOESS	E
	8	1.2		Tan/brown, gravelly SILT with some sand. Sand is fine, gravel is fine to medium. Poorly graded, medium dense. Dips 5° to NE, thickens to the south with the slope angle.		ALLUVIAL FAN DEPOSIT	E			
		1.6	0.0	Light brown, sandy GRA fine to coarse, gravel is dominant, sub-rounded	fine to coarse, cobbles	to 200mm, clasts an	schist			Ē
		2.0	Cap :	slightly to the east.	slightly to the east. Light brown, SILT with minor/some sand. Sand is fine. Uniform, Dips slightly to the					Ė
		2.4	\times	Light brown, SILT with east.	minor/some sand. San	d is fine. Uniform, Dip	ns slightly to the		ALLUVIAL FAN DEPOSIT	E
		2.8	××				Ε			
	NO SEEPAGE	3.2	×××						E	
	NO	3.6	K^X							F
		4.0				Tota	I Depth = 3.7 m			E
	8	4.4								
		4.8								-
		5.2								-
		5.6								
	3	6.0								\parallel
		6.4								-

COMMENT: PHOTO REF.: N/A	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

			see site			Inclination:	see site map	_	Direction: N/A	
	NO ELE	EASTING: ORTHING: EVATION: METHOD:		2194710 mE 5585767 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERA COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
	,			ENGINEER	RING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEРТН (m)	GRAPHIC LOG	PART	/ ROCK CLASSIFICATI TICLE SIZE CHARACTE RING, SECONDARY AND	RISTICS, COLOUR,	īs	WATER CONTENT	SOIL / ROCK TYPE, ORI MINERAL COMPOSITION DEFECTS, STRUCTUR FORMATION	ON,
		0.2	$\stackrel{\times}{\times}$	Brown, organic SILT wi dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	moist	TOPSOIL	
	8	0.4		SILT. Uniform, firm. Sui	b-horizontal.			slightly moist	ALLUVIAL DEPOSIT	
		1.0	1.2	niform, stiff. Thickens	to the south.		slightly moist	ALLUVIAL DEPOSIT		
	NO SEEPAGE	1.6 1.8 2.0 2.2 2.4 2.5		Brown, silty GRAVEL wi to coarse, gravel is fine clasts are angular to su to very dense, hard to e	to coarse, boulders to b-angular, minor sub-r	1m, clasts are schist ounded clasts. Poorly	dominant,	moist	ALLUVIAL FAN GRAVEL	
	ž	3.0	Ke,X			То	tal Depth = 3 m			+
_		3.2						_		

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

	F	PROJECT	Mt Cardron	na Station		The second secon			Job Number: 160677		
			see site			Inclination:	see site map		Direction: N/A		
	NO ELE	EASTING ORTHING EVATION METHOD		2194845 mE 5585777 mN see site map m N/A	INFOMAP NO. DIMENSIONS:	P NO. COMP IONS: HOLE STAR			FOR: Joe ANY: Workable Earth FED: 26-Aug-05 HED: 26-Aug-05		
				ENGINEER	ING DESCRIPTION				GEOLOGICAL		
PENETRATION (SPT)	9				TICLE SIZE CHARACTER ING, SECONDARY AND	RISTICS, COLOUR, MINOR COMPONEN		WATER CONTENT	SOIL / ROCK TYPE, ORI MINERAL COMPOSITION DEFECTS, STRUCTUR FORMATION	ON,	
			$K_{\cdot}X$	Brown, organic SOLT with rare of	oots, Uniform, saft. Parallel to	slope profile that dips to the	eard.		TOPSOIL	-	
		0.4	κ	SILT with some sand. S	and is fine. Uniform, fir	m. Sub-horizontal.		mois +	LOESS	E	
	3 37	0.8	8 Brown, silty GRAVEL with some boulders and cobbles and minor sand. Sand is fir to coarse, gravel is fine to coarse, boulders to 1m, sub-rounded to angular clasts Well graded, medium dense. Dips 5° to the east.		slightly moist	ALLUVIAL FAN GRAVEL					
	5	2.0	0.1	Brown, sandy GRAVEL v 500mm. Well graded, m					ALLUVIAL FAN GRAVEL	L	
			35.0					ist			
		2.4	0					slightly moist		E	
	B	2.8	1001					UI		\vdash	
	NO SEEPAGE	3.2	300						L		
	N	3.6	46 °A			Tota	I Depth = 3.5 m	_		ŧ	
		4.0								E	
		4.4									
	- 2	4.8								-	
	3	5.2								-	
		5.6									
	3	6.0									
		6.4									

COMMENT: PHOTO REF.: N/A	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

_			Mt Cardro			Inclination:	see site map	_	Direction: N/A		
	NO ELE	ASTING: RTHING: VATION: METHOD:		2194967 mE 5585845 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:	12T Digger	OPERA:	TOR: ANY: TED:	Joe Workable Earth 26-Aug-05		
				ENGINEER	RING DESCRIPTION				GEOLOGICAL		
PENETRATION (SPT)	GROUNDWATER / SEEPAGE					RISTICS, COLOUR,	īS	WATER CONTENT	SOIL / ROCK TYPE, ORI MINERAL COMPOSITION DEFECTS, STRUCTUR FORMATION	ON,	
			K X	Brown, organic S&T with rare r	roots, Uniform, soft. Parallel to	slope profile that dips to the	eard.	E	TOPSOIL	-	
		0.4	\times_{\times}	SILT. Uniform, firm. Par	rallel to slope profile th	at dips slightly to the	east.	moist	LOESS	E	
		0.8	17.	Brown, sandy GRAVEL	with some cobbles and	boulders and rare sill	t. Sand is fine		ALLUVIAL FAN GRAVEL	+	
	8	1.2	000	to coarse, gravel is fine to coarse, boulders to 500mm, clasts are angular to sub- rounded, schist dominated. Well graded, medium dense to dense. Dips 3° to the		Toist		E			
		1.6	660			slightly moist					
		2.0	σ .					-	-		
		2.4	0.00	Light brown, sandy GRA gravel is fine to coarse, rounded to angular. We	cobbles to 200mm, ck	asts are schist domina			ALLUVIAL FAN GRAVEL	F	
		2.8	A ap	Tournes to disguist the						E	
	NO SEEPAGE	3.2	08.0	00.0	05.0						F
	NOS	3.6	7.							E	
		4.0				Total Depth = 3,7 m					
		4.4								E	
		4.8								-	
		5.2								-	
		5.6									
		6.0									
		6.4							55		

COMMENT: PHOTO REF.: N/A	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

			: see site			Inclination:	see site map	_	Direction: N/A	
	NO ELE	EASTING RTHING VATION METHOD	:	2194970 mE 5585756 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:	-	OPERA COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE (II) OR AND MALE R / SEEPAGE (III) OR AND MALE R / SEEPAGE (III)					RISTICS, COLOUR, D MINOR COMPONEN		WATER CONTENT	SOIL / ROCK TYPE, ORI MINERAL COMPOSITIO DEFECTS, STRUCTUR FORMATION	ON,
			X.X	Brown, organic SILT with rare r				-	TOPSOIL	-
		0.4	*×*	SILT. Uniform, firm. Par	rallel to slope profile th	at dips slightly to the	east.	moist	LOESS	H
	3	0.8	X.	Grey/brown, sandy SILT	C. Sand is fine. Uniform	n, firm. Sub-horizonta	1	moist	ALLUVIAL SILT	Ħ
	8	1.2	K	Grey/brown, SILT with	rare clay. Uniform, firm	to stiff. Sub-horizon	tal.	mois	ALLUVIAL SILT	\Box
	:3	1.6	0.1	Sandy GRAVEL with minor cobbles and rare boulders. Sand is fine to coarse, gravel is fine to coarse, boulders to 250mm, clasts are schist dominated, sub-rounded to sub-angular. Poorly graded, medium dense. Sub-horizontal.				sfightly moist	ALLUVIAL FAN GRAVEL	-
	3	2.0	06°0					stght		E
		2.4		SAND. Sandy lense. Uni	AND. Sandy lense. Uniform, loose. Sub-horizontal.				ALLUVIAL FAN DEPOSIT	
	1	2.8	0.00		ninor cobbles. Sand is fine to coarse, gravel is fine to coarse, ed to angular, cobbles to 150mm. Poorly graded, medium				ALLUVIAL FAN GRAVEL	-
	8	3.2	7.50	dense, sub-nonzonal,						H
	SEEPAGE	3.6	08.0							
	NO	4.0	8						<u>.</u>	F
		4.4				То	tal Depth = 4 m			=
		and:								
	8	4.8								
		5.2	-							H
		5.6								Н
	3	6.0								Ц
		6.4								

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

			see site			Inclination:	see site map	-	Direction: N/A	
										=
	NORTHING: 5585 ELEVATION: see site r			2195099 mE 5585740 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERAT COMPA HOLE START HOLE FINISH	ANY:	Workable Earth 26-Aug-05	
				ENCINEED	ING DESCRIPTION				GEOLOGICAL	=
	ш		т т	ENGINEER	ING DESCRIPTION				GEOLOGICAL	\dashv
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEРТН (m)	GRAPHIC LOG	SOIL / ROCK CLASSIFICATION, PLASTICITY OR PARTICLE SIZE CHARACTERISTICS, COLOUR, WEATHERING, SECONDARY AND MINOR COMPONENTS				WATER CONTENT	SOIL / ROCK TYPE, ORIG MINERAL COMPOSITIO DEFECTS, STRUCTURI FORMATION	IN,
			\times \times	Brown, organic SOLT with rare of	nots. Uniform, saft. Parallel to	slope profile that dips to the	ent.		TOPSOIL	-
		0.4	XX	SILT with some sand, Sand is fi	ne. Uniform, firm. Parallel to sk	ope profile that dips slightly	to the east.	E	LOESS	FI
	- 1	-	5XX	Brown, silty GRAVEL with minor		ts. Sand is fine to coarse, g	ravel is fine to coarse,		ALLUVIAL FAN DEPOSIT	-
		0.8	17.1	Poorly graded, loose. Sub-horiz					ALLUVIAL FAN GRAVEL	7-1
	- 1	-	5.08	Brown, sandy GRAVEL v						F
		1.2	1200	coarse, gravel is fine to coarse, boulders to 200mm, clasts are subangular to subrounded, schist dominant. Well graded, medium dense. Dips 2° to the east.						H
	- 8		3.5							H
		1.6	08.0							
		1.0	10							Н
		2.0	17.					most		H
		22:01	0.00					Ĕ		FI
		2.4	17.0							H
		0769	5.60							-
		2.8	08.0							H
	AGE	2656	100							-1
	NO SEEPAGE	3.2	S 1							Н
		0.00	77.7							-
		3.6	200						Lis.	
		500.00				Tota	l Depth = 3.6 m		V.	-
		4.0	J I							
			1 1							E
		4.4								FI
			1							П
		4.8								-
			1							П
		5.2								-
		3.2	1							Н
		5.6	† I							H
		Pine.								
		6.0	- I							H
		,								
		6.4								\perp

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

LOCATION: see site map				Inclination: see site map Direction: N/A						
	NO ELE	ASTING: RTHING: VATION: VETHOD:		2195055 mE 5585602 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERA COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	SOIL / ROCK CLASSIFICATION, PLASTICITY OR PARTICLE SIZE CHARACTERISTICS, COLOUR, WEATHERING, SECONDARY AND MINOR COMPONENTS						WATER CONTENT	SOIL / ROCK TYPE, ORI MINERAL COMPOSITIO DEFECTS, STRUCTURI FORMATION	N,	
			$\times_{\sim} \times$	Brown, organic SILT wit dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	aom -	TOPSOIL	=
		0.4	$\kappa \sim$	SILT with some sand. Sand is fi	ne. Uniform, firm. Parallel to s	tope profile that dips slightly	to the east.		LOESS	1
	9	0.8		Grey brown, sandy SILT. Sand is fine. Uniform, firm. Dips slightly to the south east.		moist	ALLUVIAL SILT			
		1.6		\times	XX	\times	Grey brown, SILT with rare clay. Uniform, firm to stiff. Dips slightly to the south east.	moist	ALLUVIAL SILT	F
	1		0.1	Brown, sandy GRAVEL with rare to 300mm, sub-munded to ang				som +	ALLUVIAL FAN GRAVEL	-
	NO SEEPAGE	2.4 2.8 3.2 3.6		Brown, sandy GRAVEL v coarse, gravel is fine to subrounded, schist dom	coarse, boulders to 40	0mm, clasts are suba	ingular to	moist	ALLUVIAL FAN GRAVEL	
		4.4				Tota	I Depth = 4.3 m	T		7-1
	- 2	4.8								-
		5.2								-
		5.6								
	3	6.0								
		6.4							(I)	

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

	LOCATION: see site map				Inclination: see site map Direction: N/A					
	NO ELE	ASTING RTHING VATION VETHOD		2194935 mE 5585657 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERA* COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
	ENGINEERING DESCRIPTION								GEOLOGICAL	
PENETRATION (SPT)	GRAPHIC LOG GRAPH						WATER CONTENT	SOIL / ROCK TYPE, ORI MINERAL COMPOSITIO DEFECTS, STRUCTUR FORMATION	ON,	
			K. X	Brown, organic SILT with rare r					TOPSOIL	-
		0.4	\times \times	SILT with some sand, Sand is fi	ne. Uniform, firm. Parallel to s	Rope profile that dips slightly	to the east.	E	LOESS	-
		0.8	\times	Grey, sandy SILT. Sand	is fine. Uniform, firm I	o stiff. Sub-horizontal		moist	ALLUVIAL SILT	Ε
	8	Grey brown, SILT. Uniform, firm to stiff. Thickens to the southwest.						moist	ALLUVIAL SILT	E
	8	2.0	× >	Brown, silty GRAVEL with some cobbles and boulders and minor sand. Sand is fine to coarse, gravel is fine to coarse, boulders to 500mm, clasts are schist dominant, clasts are angular to sub-angular, minor sub-rounded clasts. Poorly graded, dense to very dense, hard to excavate. Thickens to the south.				moist	ALLUVIAL FAN GRAVEL	
	•	2.4 2.8 3.2 3.6		Grey brown, SAND with medium, gravel is fine t				most	ALLUVIAL FAN DEPOSIT	
		4.4	000	Grey brown, sandy GRA coarse, gravel is fine to rounded, schist dominal the east.	coarse, boulders to 50	Omm, clasts are angu	lar to sub-	moist	ALLUVIAL FAN DEPOSIT	Ē
		4.8				Total	Depth = 4.6 m			
		5.2								-
		5.6	-							
	1	6.0	-							\mathbb{H}
L.,		6.4								Ш

COMMENT: Minor, slow seep @ 2.6m	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

		CATION:	(cut)	na station		Inclination:	see site map		Direction: N/A	
	NO ELE	ASTING: RTHING: VATION: METHOD:		2195215 mE 5585931 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERAT COMPA HOLE START HOLE FINISH	ANY:	Workable Earth 26-Aug-05	
			in etc.	ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DЕРТН (m)	GRAPHIC LOG	PART	ROCK CLASSIFICATION TICLE SIZE CHARACTER TING, SECONDARY AND	RISTICS, COLOUR,	īS	WATER CONTENT	SOIL / ROCK TYPE, ORI MINERAL COMPOSITIO DEFECTS, STRUCTUR FORMATION	IN,
-			$K_{\cdot}X$	Brown, organic S&T with rare n	oots, Uniform, soft. Parallel to	slope profile that dips to the	end.	E	TOPSOIL	$\overline{}$
	9	0.2	× × ×	Grey brown, slity GRAVE fine, gravel is fine to coo Dips to the east.	EL with minor cobbles arse, boulders to 300m	and sand and rare gra nm. Poorly graded, me	evel. Sand is edium dense.		ALLUVIAL FAN GRAVEL	
		0.8	×°×					dry		
		1.0	×°×							
	9	1.2	16X3							E
	- 4	1.4	9.328	11-1-1-1	er out of the			_	CARLY OURTERMARY	\perp
	3	1.6		Light brown, silty GRAVI coarse, boulders to 300r					EARLY QUATERNARY GRAVEL	
		1.8	ō∘Xō							E
		2.0	\times 2 \times					dry		
		2.2	οX					0		E
	SEEPAGE	2.4	XeX							
	ON	2.6	06X0			Total	I Depth = 2.6 m			-
		2.8				1000				Н
	3	3.0								H
		3.2								Ш

COMMENT: Standing @ 70°-80°, old weathered cut in road track	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

_		CATION	(cut)	na Station		Inclination: s	see site map	-	Direction: N/A	\dashv
	NO ELE	EASTING: PRTHING: EVATION: METHOD:		2195093 mE 5585900 mN see site map m N/A	EQUIPMENT: 12T D INFOMAP NO. DIMENSIONS: EXCAV. DATUM: Groun	ligger	OPERATO	Y: D:	Joe Workable Earth 26-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEРТН (m)	GRAPHIC LOG	PART WEATHER	/ ROCK CLASSIFICATION, PL/ ICLE SIZE CHARACTERISTIC ING, SECONDARY AND MINO	S, COLOUR, R COMPONENTS	TO HAT DAY HOW WITH THE CALL TO A T	WATER CONTENT	SOIL / ROCK TYPE, ORIG MINERAL COMPOSITION DEFECTS, STRUCTURE, FORMATION	N,
			XVX	Brown, organic S&T with rare r	oots, Uniform, soft. Parallel to slope pro	fie that dips to the east.		0	TOPSOIL ALLINTAL EASI CRAVEL	+
	9	0.4	200 X 200 X 200 X 200 X 200 X X 200 X 200 X 200 X 200 X 200 X 200 X 200 X 200 X 200 X 200 X X 200 X 200 X X 200 X X 200 X X 200 X X 200 X X X X 200 X X X X X X X X X X X X X X X X X X	Sand is fine, gravel is fir	GRAVEL with some sand, min ne to coarse, boulders to 300 ninated gravel. Well graded, r	mm, clasts are sub-	angular to		ALLUVIAL FAN GRAVEL	
	3	1.2	×9>							
	:	1.6	1.6 OX							
		2.0	X.X							
		2.4	86X8					dry		E
		2.8					1	0		E
	3	3.2	X .×							H
		3.6	å6Xå							E
		4.0	X							H
	SEEPAGE	4.4	833							E
	NO SE	4.8	34.X3							-
	3	5.2				Total Di	epth = 5 m			
	1	5.6								Н
	3	6.0	-							Н
		6.4							of p	

COMMENT: Standing vertical to 80° in cut	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

	LOCATION: N/A					Inclination: see site map Direction: N/A				
	NO ELE	ASTING RTHING VATION VETHOD		2194978 mE 5585410 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERA COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
	ENGINEERING DESCRIPTION								GEOLOGICAL	
PENETRATION (SPT)	SOIL / ROCK CLASSIFICATION, PL PARTICLE SIZE CHARACTERISTIC WEATHERING, SECONDARY AND MINK				RISTICS, COLOUR, DIMINOR COMPONEN		WATER CONTENT	SOIL / ROCK TYPE, OR MINERAL COMPOSITI DEFECTS, STRUCTU FORMATION	ION,	
			X. X	Brown, organic SILT with rare n					TOPSOIL	
		0.4	X_7	SILT with some sand. S slightly to the east.	and is fine. Uniform, fi	rm. Parallel to slope p	rofile that dips	HOIS +	LOESS	
		0.8 1.2 1.6	Grey/brown, SILT with a southeast.	rare clay. Uniform, firm	n to stiff. Dips slightly	to the	moist	ALLUVIAL SILT		
		2.4		Grey/brown, SILT with southeast.	minor / some clay. Uni	form, stiff. Dips slight	ly to the	moist	ALLUVIAL SILT	
		2.8	0.0	Brown, sandy GRAVEL v fine to coarse, clasts are 700mm. Poorly graded,	e schist dominant, sub-	rounded to angular, I	ALLUVIAL FAN GRAVEL	Ŧ		
		3.2	200	rooming gradety	medium de se to de l	act offa 3. to the cas				Н
	SEEPAGE	3.6	08.0							Ε
	8	4.0	85.3							
		4.4	8 11 8			Tota	Depth = 4.1 m		(E)	=
		4.8								-
		5.2								-
		5.6								
	्	6.0								
		6.4								

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

	LOCATION: N/A				Inclination: see site map Direction: N/A					
	NO ELE	ASTING: RTHING: VATION: METHOD:		2194765 mE 5585136 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:	-	OPERA* COMPI HOLE STAR HOLE FINISI	ANY: TED:	Workable Earth 26-Aug-05	
	ENGINEERING DESCRIPTION								GEOLOGICAL	
PENETRATION (SPT)	BENETRATION (SPT) OR OUTDAMATER / SEEPAGE OR					RISTICS, COLOUR, MINOR COMPONEN		WATER CONTENT	SOIL / ROCK TYPE, ORIG MINERAL COMPOSITIO DEFECTS, STRUCTURE FORMATION	N,
		0.2	\times_{\times}	Brown, organic STLT wit dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	moist	TOPSOIL	El
	9	0.4	$\stackrel{\times}{\times}$	SILT with some sand. S slightly to the east.	and is fine. Uniform, fi	rm. Parallel to slope p	rofile that dips	moist	LOESS	Ē
	88	0.6	XXX	Tan/brown, SILT with m	ninor clay. Uniform, sti	ff. Sub-horizontal.		moist	ALLUVIAL FAN DEPOSIT	F
	8	1.0		Gravel is fine to coarse	Grey/brown, large BOULDERS in a silt matrix with minor lenses of silty gravel. Gravel is fine to coarse in the lenses, boulders to 2m of sub-angular schist. Poorly graded, medium dense to dense. Dips slightly to the east.					Ē
	-	1.2								E
		1.4						moist		E
	3	1.6						ш		Ц
	SEEPAGE	1.8								
	NO SEE	2.0								E
		2.2]			Total	Depth = 2.1 m			텝
	2.4									-
	2.6									-
		2.8								
		3.0								
		3.2							0	

COMMENT: Digger refusal due to large boulders	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

		CATION:	N/A	ia Station		Inclination: see site map Direction: N/A				
	NO ELE	ASTING: RTHING: VATION: VETHOD:		2194501 mE 5585307 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERA COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	SOIL / ROCK CLASSIFICATION, PLASTICITY OR PARTICLE SIZE CHARACTERISTICS, COLOUR, WEATHERING, SECONDARY AND MINOR COMPONENTS						WATER CONTENT	SOIL / ROCK TYPE, ORIG MINERAL COMPOSITIO DEFECTS, STRUCTURE FORMATION	N,	
			\times_{\times}^{\times}	Brown, organic SILT wit dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	mois -	TOPSOIL	F
	-	0.4	$\times \times$	SDT with some sand. Sand is fi	ne. Uniform, firm: Parallel to s	impe profile that dips slightly	to the east.	E	LOESS	\mathbf{F}
	9	0.8	X	Tan/brown, silty SAND.	Sand is fine. Uniform,	firm to stiff, Dips at 2	o to the east.	moist	ALLUVIAL SILT	E
		1.2	6X	Grey/brown, silty GRAVEL with angular to seb-rounded. Poorly			clasts are sub-	mois	ALLUVIAL FAN DEPOSIT	FI
	5	1.6	\mathbb{X}	Brown, SILT with minor coarse, boulders to 400			moist	ALLUVIAL FAN DEPOSIT		
	E.	2.0	X	Gravelly SILT with mino Poorly graded, stiff to v			e to coarse.	moist	ALLUVIAL FAN DEPOSIT	E
		2.4	\times			es and boulders. Gravel is fine to very stiff. Dips at 2° to the east.				E
	SEEPAGE	2.8		Grey/brown, large BOUI Gravel is fine to coarse			The state of the s	te	ALLUVIAL FAN DEPOSIT	E
	NO S	3.2		graded, medium dense		most		-		
		3.6				Tota	Depth = 3.2 m		-4	-
		5.5	1							H
		4.0								
		4.4								
		4.8								-
		5.2								-
		5.6								
		6.0								
		6.4								

COMMENT: Digger refusal due to large boulders	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

		CATION:	N/A	na Salion		Inclination:	see site map	_	Direction: N/A	
	NO ELE	ASTING: RTHING: VATION: VETHOD:		2194256 mE 5585501 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:	-	OPERA COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEРТН (m)	GRAPHIC LOG	PART	TICLE SIZE CHARACTE	TON, PASTICITY ON ZONE MINERAL COMPONENTS OF DEFECTS, STI			SOIL / ROCK TYPE, ORI MINERAL COMPOSITI DEFECTS, STRUCTUR FORMATION	ON,
		0.2	\times	Brown, organic SILT wit dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	moist	TOPSOIL	Ε
	9	0.4	$\stackrel{\times}{\times}$	SILT with some sand. Sand is fine. Uniform, firm. Parallel to slope profile that dips slightly to the east.					LOESS	
	9	0.6	XX	Grey/brown, sandy SIL1	r. Sand is fine. Uniform	ı, stiff. Sub-horizonta	k)		ALLUVIAL SILT	Ħ
	- 5	0,8	\times_{\times}							
		1.0	\times					moist		
		1.2	×××							E
		1.4	κ^{\sim}							E
	2	1.6	\otimes	Brown, SILT with minor	clay. Uniform, very st	ff. Sub-horizontal,		moist	ALLUVIAL SILT	-
		1.8	$\sqrt{}$							E
	SEEPAGE	2.0		Grey/brown, large BOUL Gravel is fine to coarse, dense to dense. Dips sli	in the lenses, boulder			moist	ALLUVIAL FAN DEPOSIT	E
	S.	2.2				Taba	I David 22 a			E
		2.4				Tota	l Depth = 2.2 m			-
		2.6								-
		2.8								Ц
	3	3.0								
		3.2								

COMMENT: Refusal of digger due to boulders	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

		CATION:	N/A	na Salion		Inclination:	see site map	_	Direction: N/A	
	NO ELE	EASTING: ORTHING: EVATION: METHOD:		2193955 mE 5585763 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERA COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
	No.			ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	SOIL / ROCK CLASSIFICATION, PLAS PARTICLE SIZE CHARACTERISTICS, WEATHERING, SECONDARY AND MINOR				RISTICS, COLOUR,			SOIL / ROCK TYPE, ORI MINERAL COMPOSITIO DEFECTS, STRUCTUR FORMATION	ON,	
		0.2	XX	Brown, organic SILT wit dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	moist	TOPSOIL	E
	9	0.4	$\stackrel{\times\times}{\times}$	SILT with some sand. S slightly to the east.	and is fine. Uniform, fi	rm. Parallel to slope p	rofile that dips	moist	LOESS	
	5	0.6	$\stackrel{\times\times}{\times}$	Tan/brown, SILT with n stiff. Dips to the east 5-		s to 500mm. Poorly g	raded, firm to		ALLUVIAL FAN DEPOSIT	Ī
		1.2	$\overset{\times}{\times}$					maist to wet		
		1.6	$\stackrel{\sim}{\sim}$							
	_	2.0	× × ×	gravelly lenses acting as to coarse, boulders to 2	s conduit for water. Sa -3m, clasts are sub-ro	s and boulders, rare sand, rare and is fine to medium, gravel is fine bunded to angular. Poorly graded,			ALLUVIAL FAN DEPOSIT	Ē
	12	2.4	$\stackrel{\times}{\times}$	firm (becoming weak w	un seepage influence).	unps to the east 5-10	E.	wet, saturated at position of		-
	3	2.6	$\stackrel{\sim}{\times}$					wet, satur		-
		3.0	XX			Total	Depth = 2.8 m			
		3.2								

COMMENT: Minor to moderate seepage @ 1.9m, 20L in test pit base after 10 minutes	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

			Mt Cardro	na Station		U SONO - 100 V	- 16		Job Number: 160677	\equiv
	LO	CATION:	N/A	10.30.411411		Inclination:	see site map		Direction: N/A	
	NO	ASTING: RTHING: VATION: IETHOD:		2194150 mE 5585988 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERA' COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	GROUNDWATER / SEEPAGE	DEPTH (m)	GRAPHIC LOG	PART	/ ROCK CLASSIFICATION FICLE SIZE CHARACTER RING, SECONDARY AND	RISTICS, COLOUR,	īs	WATER CONTENT	SOIL / ROCK TYPE, OR MINERAL COMPOSITI DEFECTS, STRUCTUR FORMATION	ON,
7			$\times \times$	Brown, organic S&T with rare r	nots, Uniform, saft. Parallel to	slope profile that dips to the	ent.	E	TOPSOIL	Ŧ
		0.2	$\stackrel{\times}{\sim}$	SILT. Uniform, firm. Par	railel to slope profile th	at dips to the east.			LOESS	
	9	0.6	$\stackrel{\hat{\times}}{\times}$					moist		
		1.0								
		1.2	$\mathbf{x}^{\mathbf{X}}\mathbf{x}$	Grey/brown, SILT with minor gr	ravel. Gravel is fine to medium	Poorly graded, firm. Dips to	the cast.	E ¥	ALLUVIAL FAN DEPOSIT	\dashv
		1.4	\times	Red/brown, SILT with s saturated, weak, act as to medium. Poorly grad medium dense, loose w	a conduit for water. Sa ed, silt is stiff, slightly	and is fine to medium plastic with moisture,	gravel is fine	ated at	ALLUVIAL FAN DEPOSIT	
		1.6	κ^{\sim}					wet, satur		
	-		JXJ					Wet,		
	1	1.8	Sx3	Red/brown, silty GRAVE					ALLUVIAL FAN DEPOSIT	Н
	_	2.0	0.00	coarse, sand is fine, bor east.	ulders to 2m. Poorly gr	aded, medium dense.	Dips to the		Control of the Contro	
	→	2.2	3.00 3.000	\$1000				moist		
	}	2.4	× <>							
		2.6				Total	Depth = 2.5 m		0.12	
		2.8								
		3.0								
		3.2								

COMMENT: Minor seepages from 1.7 - 2.1m, refusal of digger due to boulders	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

EXCAVATION NUMBER:

		CATION:	N/A	ia Salion		Inclination:	see site map	_	Direction: N/A	
	NO ELE	ASTING: RTHING: VATION: VETHOD:		2194427 mE 5585873 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERATO COMP. HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	SOIL / ROCK CLASSIFICATION, PARTICLE SIZE CHARACTERIS WEATHERING, SECONDARY AND M					RISTICS, COLOUR,	īS	WATER CONTENT	SOIL / ROCK TYPE, ORI MINERAL COMPOSITION DEFECTS, STRUCTUR FORMATION	ON,
		0.2	XX	Brown, organic SILT wit dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	moist	TOPSOIL	E
		0.4	$\stackrel{\times}{\times}$	Tan/brown, SILT. Unifor east.	rm, firm. Parallel to slo	pe profile that dips sl	ightly to the	moist	LOESS	
	8	0.6 Red/brown, SILT with some to minor gravel, Poorly graded, firm. Dips to the east.				ninor clay. Gravel is fi	ne to coarse.		ALLUVIAL DEPOSIT	F
		1.0	$\stackrel{\times}{\times}$					wet		
		1.2	0.1	Grey/brown, sandy GRA fine to coarse, gravel is angular, boulders to 2m	fine to coarse, clasts a	re schist dominant ar			ALLUVIAL FAN GRAVEL	Ē
		1.4	8°8		76E - 78B					
		1.8	7.					ti et		E
		2.0	500					slightly moist		E
		2.2	8.8							E
	GE	2.4								E
	NO SEEPAGE	2.6	200	0 kg					F	
	-	2.8	San S			Tota	I Depth = 2.8 m	<u> </u>		+
	3	3.0								-
		3.2								

COMMENT: Resfusal of digger due to boulders	Logged By: FAW		
	Checked Date:		
PHOTO REF.: N/A	Sheet: 1 of 1		

EXCAVATION NUMBER:

		CATION:	N/A	na Station		Inclination:	see site map	_	Direction: N/A	
	NO ELE	ASTING: RTHING: VATION: METHOD:		2194704 mE 5585585 mN see site map m N/A	EQUIPMENT: INFOMAP NO. DIMENSIONS: EXCAV. DATUM:		OPERA COMP HOLE STAR HOLE FINIS	ANY: TED:	Workable Earth 26-Aug-05	
				ENGINEER	ING DESCRIPTION				GEOLOGICAL	
PENETRATION (SPT)	SOIL / ROCK CLASSIFICATION, PLASTICITY OF PARTICLE SIZE CHARACTERISTICS, COLOUR WEATHERING, SECONDARY AND MINOR COMPONE				RISTICS, COLOUR,	īS	WATER CONTENT	SOIL / ROCK TYPE, ORIG MINERAL COMPOSITIO DEFECTS, STRUCTURI FORMATION	ON,	
		0.2	\times	Brown, organic SILT wit dips to the east.	th rare roots. Uniform,	soft. Parallel to slope	profile that	moist	TOPSOIL	E
			\times \times	SILT with some sand, Sand is fi	THE RESERVE OF THE PARTY OF THE PARTY.		to the east.	Εğ	LOESS	-
	1	0.4	$\stackrel{\times}{\times}$	Grey/brown, SILT, Unifo	orm, very stiff. Dips slig	ohtly to the east.		moist to	ALLUVIAL FAN DEPOSIT	-
		0.8	XX	Tan/brown, SILT with n very stiff. Dips slightly t		oulders to 800mm. Po	oorly graded,	moist to	ALLUVIAL FAN DEPOSIT	Ē
	GE.	1.0 1.2 1.4 1.6 1.8 2.0 2.2		Tan/brown, SILT with s lenses from 1.5 to 2m. clasts are sub-rounded Dips slightly to the east	Sand is fine, gravel is f to sub-angular schist d	ine to coarse, boulder	s to 500mm,	moist	ALLUVIAL FAN DEPOSIT	
	NO SEEPAGE	2.6		Grey/brown, BOULDERS graded, dense. Dips slig		obbles, Boulders to 2-	3m. Poorly	moist	ALLUVIAL FAN DEPOSIT	
		3.0				Total	Depth = 2.8 m	Ī		
		3.2								

COMMENT:	Logged By: FAW
	Checked Date:
PHOTO REF.: N/A	Sheet: 1 of 1

TONKIN & TAYLOR

SCALA PENETROMETER LOG

Job No: 160677

Project: Mt Cardrona Station

Date: 16/09/2005 Operated by: FAW

Logged by: ASC

Test Number SC1 & SC2
Sheet 1
of 1

Location: I		Location:	C2 Beside TP4	0 T		SC1	-	
RL: I	From Surface	RL:	From Surface	e	(
mm	No. of	mm	No. af	200 -	1		_	
Driven	Blows	Driven	Blows	400				
50	0.5	50	0.5	400				
100	0.5	100	0.5	600				
150	1	150	2					
200	1	200	2	1200 - 1200 -	2			
250	1	250	2	Ē	<			
300	1	300	3	≥1000 -				
350	1	350	6	¥.,,,,,	1			
400	1	400	5	8 1200				
450	1	450	5	1400 -				
500	7	500	6	1100	5			
550	1	550	Refusal	1600 -				
600	7	600		10000000				
650	7	650		1800 -				
700	1	700		2000 +		1.		
750	2	750		10,274,000,000,000	100	2		
800	j j	800		0		5 Blows / 50	10	
850	2	850		1 1		blows / 30		
900	1	900		00	13.3	6.7	4.4	3
950	2	950		1		mm / blo	w	
1000	2	1000				SC2		
1050	2	1050		0 7		302		
1100	2	1100		1				
1150	2	1150		200 -	L			
1200	5	1200		400				
1250	3	1250		1 400				
1300	2	1300		600 -				
1350	3	1350		250350				
1400	3	1400		£ 800 +				
1450	3	1450		E.,				
1500	4	1500		£ 1000				
1550	d	1550		1000 -				
1600	5	1600		A				
1650	6	1650		1400 -				
1700	10	1700		31.49.20				
1750		1750		1600 -				
1800		1800		1900				
1850		1850		1800 -				
1900		1900		2000 +				
1950		1950		0	2	4	6	
2000		2000		1 "	- 2	Blows / 50		
		17		70 G				
				00	25	12.5	8.3	6

Job No: 160677

Project: Mt Cardrona Station

Date: 16/09/2005 Operated by: FAW

Logged by: ASC

Test Number SC3 & SC4
Sheet 1
of 1

	C3	SC						9	СЗ		
	Beside TP5 From Surface		See Site Plan From Surfac		0 +				-		
20010000	No. of			e.	222	-					
mm Driven	Blows	Driven	No. at Blows		100 +						
50	DIOWS	50	1 Diows		200						
100	0.5	100	1		200						
150	0.5	150	1		300				1		
200	3	200	2	_					- 3		
250	4	250	1	E	400						
300	6	300	2	Ē	500						
350	Refusal	350	4	Depth (mm)	300						
400	rigiusai	400	10	9	600 -						
450		450	Refusal								
500		500	/ Iterations		700 -						
550		550			800 -						
600		600			000						
650		650			900						
700		700									
750		750			1000 +			-			
800		800			0			Blows /			
850		850			1			Blows /	50 mr	n	
900		900			00		20	10		6.7	5
950		950			\$2.00 E			mm /			1077
1000		1000							C4		
3.0 2.0					0 -			-		1	
						1					
					100 -						
					200	1					
					300 -	<					
				5	400		_				
				epth (mm)	500						
				£							
		-		De	600						
					700 -						
					800 -						
					900						
					1000 ↓						
				,	0		E	lows /	50 mn	10	
					00	1	3.3	6.7	blow	4.4	3,

Job No: 160677

Project: Mt Cardrona Station

Date: 16/09/2005 Operated by: FAW Logged by: ASC Test Number SC5 & SC6
Sheet 1

Location:	C5 Beside TP6	Location:	C6 See Site Plan		1112	- 12	SC5			
RL:	From Surface		From Surfac	e	_					
mm	Na. of	mm	No. at	200 +				_		
Driven	Blows	Driven	Blows	400	2					
50	1	50	1	400						
100	1	100	4	600		_				
150	2	150	7.							
200	2	200	7	Depth (mm) 1000 -						
250	2	250	5	Ē			_	.		
300	3	300	4	¥1000 +				\		
350	2	350	3	¥ 1200			<			
400	4	400	4	a 1200		_		_		
450	8	450	4	1400 -			_			
500	5	500	4	1100						
550	6	550	3	1600 -						
600	8	600	2	1870/1983						
650	9	650	3	1800						
700	9	700	2	2000 +		- 1				
750	7	750	2	161600000000000000000000000000000000000	7	-				- 00
800	7	800	3	0		Blown	/ 50	10		
850	6	850	4	1		DIOW:	, , 50			
900	6	900	4	00	13.3	6	.7	4.4		3.:
950	8	950	4			mn	/ blo	w		
1000	9	1000	5				SC6			
1050	10	1050	5	0 -			500			
1100	10	1100	5					7.		
1150	8	1150	7	200 -			_			
1200	10	1200	6	400	3					
1250	9	1250	5	400		Ü				
1300	6	1300	6	600 -						
1350	6	1350	6	28880	~					
1400	8	1400	7	€ 800 +				-		
1450	8	1450	9	Depth (mm) 1000 - 1200 -						
1500	8	1500	10	£ 1000 +						
1550		1550		1200			>			
1600		1600		Ď 1200		<	5			
1650		1650		1400 -			-			
1700		1700		N-967624						
1750		1750		1600 -						
1800		1800		1000						
1850		1850		1800						
1900		1900		2000 +		_				
1950		1950		0	2	4	6	8	10	
2000		2000		0	2	Blows	/ 50 1	nm	10	
2000		2000		I ∞	13.3		,7 1 / blo		ď	3.

Job No: 160677

Project: Mt Cardrona Station

Date: 16/09/2005 Operated by: FAW

Logged by: ASC

Test Number SC7 & SC8
Sheet 1

	27		C8			-	^7		
	See Site Plan		See Site Plan			50	C7		
RL:	From Surface	RL:	From Surface	ce .					
mm	No. of	mm	No. af	200			_		
Driven	Blows	Driven	Blows	400	<				
50	7	50	2	400					
100	3	100	3	600					
150	3	150	4						
200	2	200	3	1000 - 1200 -					
250	2	250	4	Ė					
300	1	300	5	¥1000	-				
350	2	350	7	£			>		
400	2	400	7	2 1200					_
450	2	450	8	1400 -					
500	7	500	8	1400					
550	1	550	Refusal	1600 -					
600	1	600		1970/950					
650	2	650		1800			_		
700	2	700		2000					
750	7	750		2000 +		3			
800	1	800		0		5	10		3
850	1	850		1		Blows /	50 mm		
900	1	900		00	13.3	6.7	4.4		3.3
950	2	950		0.01	10,01	mm /			15707.5
1000	3	1000							
1050	5	1050		0 -		5	C8		
1100	8	1100							
1150	9	1150		200 -	5	<			
1200	8	1200							
1250	12	1250		400				4	
1300	Refusal	1300		600					
1350	- Nevidodi	1350		280000					
1400		1400		€ 800			_	_	
1450		1450		Ē					
1500		1500		¥1000		-	-	+-	
2010000		1550		1200 High 1200					
1550		5100000		å 1200 1					
1600		1600		1400 -					
1650		1650		1,00					
1700		1700		1600 -					
1750		1750		200000					
1800		1800		1800				-	
1850		1850		2000					
1900		1900		2000 +	- 4			9.5	
1950		1950		0	2	. 4	6	8	
2000		2000		J.		Blows / 5	ou mm		
		1-			20	10	6.7		

Job No: 160677

Project: Mt Cardrona Station

Date: 16/09/2005 Operated by: FAW

Logged by: ASC

Test Number SC9 & SC10
Sheet 1

of

S	C9	F
	Beside TP9	
0.0000000000000000000000000000000000000	From Surface	9
mm	No. of	П
Driven	Blows	H
50	0.5	ŀ
100	0.5	H
150	1	
200	1	1
250	1	1
300	1	-
350	2	
400	7.	Н
450	2	
500	1	
550	2	
600	2	
650	4	
700	2	
750	4	
800	3	
850	2	
900	2	
950	2	
1000	2	
1050	2	I
1100	2	
1150	2	
1200	2	
1250	3	
1300	4	
1350	2	
1400	3	
1450	4	
1500	3	
1550		
1600		1
1650		
1700		
1750		
1800		1
1850		
1900		
1950		-
1900		-

2000

2000

00

13.3

6.7

mm / blow

4.4

3.3

Job No: 160677

Project: Mt Cardrona Station

Date: 16/09/2005 Operated by: FAW

Derated by: FAW Logged by: ASC Test Number SC11 & SC12

Sheet 1 of 1

	Beside TP15 From Surface	Location:	312 See Site Plan From Surfac		o T			SC	of C11		
mm	No. of	mm	No. af		100 -						
Driven	Blows	Driven	Blows		100	1					
50	0.5	50	1		200 -						
100	0.5	100	2			_					
150	1	150	7		300		>				
200	1	200	3	=	400 -						
250	1	250	3	E	100						
300	2	300	3	=	500 -						
350	7	350	10	Depth (mm)							
400	3	400	Refusal	l e	600 -						
450	2	450		477	700 -						
500	2	500			700 7						
550	8	550			800 -						
600	Refusal	600			3683388						
650		650			900						
700		700			1000						
750		750			1000 +			1120			
800		800			0	0)		Blows /			
850		850			- 1			Blows /	50 mm		
900		900			00		20	10	6	.7	5.
950		950			1,000			mm /			
1000		1000							212		
					0 7			31	J12		
						1					
					100 -	-	_	-			
		17			200						
					200						
					300 -						
					0.00000			-			
				epth (mm)	400			+	-		
				Ē							
				Ŧ	500						
				t t	600						
				ŏ	000						
					700 -						
					10.000						
					800 -						
					900						
					900						
					1000 -			1	-		
					0			5 Blows / S	10 50 mm		
					œ		13.3	6.7 mm /	blow 4	.4	3.

Job No: 160677 Date: 16/09/2005 Test No. SC13

Project: Mt Cardrona Station Operated by: FAW

Location: Beside TP13 Logged by: ASC Sheet 1

RL: From Surface Checked by: FAW of 1

SC13		SC13	cont				60	SC1	3			
mm	No. of	mm	No. of	0 -			-8	301	٠	-		
Driven	Blows	Driven	Blows	27	L							
50	0.5	2550										
100	0.5	2600										
150	1	2650										
200	7	2700		500 -								
250	1	2750			1		-	-			_	
300	1	2800								_	_	
350	0.5	2850					_			_		
400	0.5	2900			7 444							
450	1:	2950		1000 -								
500	0.5	3000			<							
550	0.5	3050			<	2						
600	1.	3100			<							
650	1	3150		1500 -		_						
700	1	3200		1500					_	$\overline{}$		
750	1	3250										
800	1	3300					_					
850	1	3350										
900	7.	3400		2000 -								
950	2	3450		2000								
1000	2	3500							~			
1050	2	3550		2					2	>		
1100	2	3600		Ē					_	>		
1150	1	3650		5 2500 -			-	-			-	_
1200	2	3700		Æ	-		-	-		-	-	_
1250	1	3750		Depth (mm) ⁻			+	-		-	-	_
1300	2	3800		ă			-	-		-	-	_
1350	1	3850					-	-4-		-	-4	_
1400	2	3900		3000 -								
1450	2	3950										
1500	7	4000										
1550	6	4050										
1600	3	4100		12220								
1650	3	4150		3500 -								
1700	3	4200										
1750	3	4250										
1800	2	4300						_		- 1		
1850	3	4350		4000								_
1900	3	4400		4000 -								
1950	3	4450										
2000	3	4500										
2050	4	4550										
2100	4	4600		4500 -								
2150	6	4650		4300								
2200	5	4700										
2250	6	4750										
2300	5	4800										
2350	5	4850		5000				- //				
2400	6	4900					-	200	-		-	
2450	5	4950		(1	2		4	5	6	7	
2500	.0.	5000				BI	ows	/ 50	mm			

Test Method Used: NZS 4402:1988 Test 6.5.2 Dynamic Cone Penetrometer

Job No: 160677

Project: Mt Cardrona Station

Date: 16/09/2005 Operated by: FAW Logged by: ASC Test Number SC14
Sheet 1
of 1

Location:	14 Beside TP13
mm HL:	From Surfa No. of
Driven	Blows
50	7
100	1
150	1
200	1
250	1
300	1
350	1
400	1
450	
	2
500 550	2
10000	2
600	3
650	4
700	4
750	4
800	5
850	ô
900	5
950	Refusal
1000	
1050	
1100	
1150	1
1200	
1250	
1300	
1350	
1400	
1450	
1500	
1550	
1600	
1650	
1700	
1750	
1800	
1850	
1900	
1950	

Location: RL:	
mm	No. at
Driven	Blows
50	
100	
150	
200	
250	
300	
350	
400	
450	
500	
550	
600	
650	
700	
750	
800	
850	
900	
950	
1000	
1050	
1100	
1150	
1200	
1250	
1300	
1350	
1400	
1450	
1500	
1550	
1600	
1650	
1700	
1750	
1800	
1850	
1900	
1950	

mm / blow

2000

2000

Job No: 160677

Project: Mt Cardrona Station

Date: 16/09/2005

Test Number SC15 & SC16

Operated by: FAW		
Logged by: ASC	Sheet	1
	of	7
C16		

	D15 Beside TP14		C16 : Beside TP16			S	C15	
	From Surface		From Surfac		*			
mm	No. of	mm	No. af	200 -				
Driven	Blows	Driven	Blows	200.7	1121			
50	0.5	50	0.5	400 -	_			
100	0.5	100	0.5	54,0000				
150	1	150	1	600 -				
200	1	200	1	= 000				
250	1	250	1	E 800				
300	1	300	1	1200 -				
350	2	350	1	ŧ.				
400	1	400	1	2 1200 -				
450	7	450	1	100000000000000000000000000000000000000				
500	Refusal	500	1	1400 -				
550		550	t	1600 -				
600		600	0.5	18/20/9/201				
650		650	0.5	1800 -				
700		700	1	2000				
750		750	7	2000 -		115	ell ol	
800		800	2	0	W.	Diame	50	
850		850	2	- 5		Blows /	50 mm	
900		900	3	00	20	10	6.7	5
950		950	4				blow	
1000		1000	5				C16	
1050		1050	3	0 7			1	
1100		1100	3		_			
1150		1150	3	200 -				
1200		1200	3	400				
1250		1250	2	400				
1300		1300	2	600 -				
1350		1350	3	280,000				
1400		1400	3	€ 800 -				
1450		1450	3	E.,,,,				
1500		1500	4	Depth (mm) 1000 -				
1550		1550	5	1 1200 −				
1600		1600	6	Δ				
1650		1650	7	1400 -		-71		
1700		1700	6	1.000				
1750		1750	Refusal	1600 -			77	>
1800		1800		1800 -				
1850		1850		1000				
1900		1900		2000 -			1	
1950		1950		C	2		4 6	
2000		2000				Blows /	50 mm	
				00	25	12.5	8.3 blow	6

Job No: 160677
Project: Mt Cardrona Station

Date: 16/09/2005 Operated by: FAW Logged by: ASC Test Number SC17
Sheet 1
of 1

	C17
	Beside TP18 From Surfac
mm	No. of
Driven	Blows
50	0.5
100	0.5
150	1
200	1
250	1
300	1
350	1
400	1
450	7
500	7
550	1
600	0.5
650	0.5
700	†
750	7
800	2
850	2
900	3
950	4
1000	5
1050	Refusal
1100	
1150	
1200	
1250	
1300	
1350	
1400	
1450	
1500	
1550	
1600	
1650	
1700	
1750	
1800	
1850	
1900	
1950	
2000	

Location: RL:				
mm	No. at			
Driven	Blows			
50				
100				
150				
200				
250				
300				
350				
400				
450				
500				
550				
600				
650				
700				
750				
800				
850				
900				
950				
1000				
1050				
1100				
1150				
1200				
1250				
1300				
1350				
1400				
1450				
1500				
1550				
1600				
1650				
1700				
1750				
1800				
1850				
1900				
1950				

2000

Job No: 160677

Project: Mt Cardrona Station

Date: 16/09/2005 Operated by: FAW

Logged by: ASC

Test Number SC23 & SC24

Sheet 1

Location: RL:		Location:	224 Beside TP7 From Surfac	o —		SC	23	
mm	Na. of	mm	No. at	200				
Driven	Blows	Driven	Blows					
50		50	0.5	400				
100		100	0.5	500				
150		150	0.5	600				
200		200	0.5	€ 800				
250		250	1	E				
300		300	1	000 - 1000 - 120				
350		350	0.5	ŧ				
400		400	0.5	1200				
450		450	0.5	1400 -				
500		500	0.5	1400				
550		550	1	1600 -				
600		600	t	(8/80/98)				
650		650	1	1800				
700		700	1	2000				
750		750	7	2000 +				
800		800	1	0		Diame / F		
850		850	2	1		Blows / 5	u mm	
900		900	2	00	40	20	13.3	10.0
950		950	3			mm / b		
1000		1000	3			SC		
1050		1050	3	0 —		30	-4	T
1100		1100	3					
1150		1150	4	200 -				
1200		1200	4	400	_			
1250		1250	4	400				
1300		1300	8	600 -				
1350		1350	6	280350				
1400		1400	6	€ 800 +				-
1450		1450	8	Ē				
1500		1500	6	£ 1000				
1550		1550	8	(mm) 1000	15			
1600		1600	Refusal	å 1200				
1650		1650		1400 -				
1700		1700		Market .			<	
1750		1750		1600 -				
1800		1800		1000				
1850		1850		1800				
1900		1900		2000				
1950		1950		0	2	4	6	8
2000		2000		U		Blows / 50		U.
2000		2000		9				
					20		6.7	5.0

Appendix C: Royden Thomson's Geological Hazard Report

ROYDEN THOMSON, GEOLOGIST

11 Leitrum Street Cromwell Phone 03 445 0025 Fax 03 445 0029

20 June '06

Jenny Parker Arrow Resource Management 11 Argyle place ARROWTOWN

Dear Jenny

Mt. CARDRONA STATION: FAULT LINE AND HYDROLOGICAL REPORT

Dease find below a discussion on the six items you listed as being pertinent to the proposed development on Mt. Cardrona Station. Each item related to one or more natural hazards that have been identified by the Otago Regional Council near the site and which require to be assessed and clarified in order to progress the resource consent process.

Geological Setting

Pringles Creek drains east from the ridge crest immediately south of Mt. Cardrona (Fig.1). The upper half of the catchment comprises a moderate to steep sided basin that spans a vertical relief of more than 1000m. Beyond the basin, Pringles Creek is variably incised into a set of alluvial fans, of different ages, that effectively extend down to the Cardrona Valley floor. A prominent fan, at lower levels, is the dominant area for the proposed development on Mt Cardrona Station.

From both a field inspection and a photogeological study I have come to the conclusion that the physiography in the area is dominated by glacial processes. All tributaries draining east and south off Mt. Cardrona have upper morphologies indicative of past glacial occupation; valley glaciers to in excess of 3km in length during the Late Quaternary (probably larger for some older events), and snowfields/cirque glaciers for events associated with very recent cold periods. The alluvial fans are also considered to be fluvioglacial sedimentary deposits that formed by aggradation, in sympathy with the infilling of the main valleys during the same glaciations. In the interglacial periods rivers and streams degrade, there is progressive erosion of exposed surfaces by both aerial weathering and landslide processes, and tectonism impacts irregularly. More or less typical of many areas in Central Otago.

Faulting is a known hazard within the Cardrona Valley and its projections, and the approximate trace of the fault (zone) that trends along the north-west margin of the valley should be marked on the QLDC hazard maps. Apart from a single, defined trace on Mt. Cardrona Station there is little local evidence on which to define past and future tectonic deformation, however. Please note that for this exercise no attempt was made to investigate the distribution of tectonism or to research previous work on seismicity and likely return periods.

Item 1: Ages of Alluvial Terraces and Fans

Profiling of both field determined and photogeologically defined Cardrona River terrace surfaces and proximal fan margins was undertaken for this study. To establish best-fit ages the profiles

were extended to the main Clutha Valley, for which there is an approximate to relatively precise geometric relationship and chronology. On this basis a set of 'local' values was determined for the mid Cardrona area.

Table 1 lists the assessed ages of the principal features of interest.

Item 2: Fault Trace Position

Figures 3a and 4 indicate the approximate position of the fault trace in plan while Figure 3b shows a likely attitude at depth, assuming a compressional regime for local tectonism. Several photos also illustrate the position and morphology of the fault scarp.

Features of note:

- a) The fault only dislocates the upper, prominent fan surface with an assessed 140,000 year age. A west-side-up displacement suggests reverse movement on a west-dipping plane.
- There is a prominent but eroded scarp on the Skifield Road at RL670 approximately (Photo 6).
- c) Across a gully, to the south of the road, a prominent, arcuate scarp is present which is also highlighted by springs. I suspect the arcuate nature is a function of stream incision and that the trace is on a line trending from the foreground in Photo 6. From contour profiling it is estimated the fault throw is about 10 – 15m. As indicated in the sketch below,

it is probable that the trace lies about at the centre of the fault riser, the initially uplifted margin of the western block would collapse then erode, to produce a debris apron on the downfaulted side.

- d) A 10 15m throw appears to be excessive for a single event. Multiple, same-sense movements are assumed to have occurred along this fault strand.
- e) The riser near the apex of the "Village Terrace" fan does not reflect the tectonic displacement in total as the adjoined fans have different ages. Significant landslide deposits mantle the riser and mask any prospective fault trace (Photo 1).

- f) No fault trace is visible on the floor or margins of Pringles Creek. There is no apparent deformation of the "Village Terrace" fan but the trace probably lies to the west of the fan apex (Fig. 3a). As a consequence, it is not possible to estimate whether the latter fan has been disrupted or not when it still existed upstream from The Bend.
- g) To the south of Pringles Creek the fault scarp is again evident as an irregular step in the 140,000 year old fan, the downthrown side of which is only slightly higher than the "Village Terrace" fan apex. The surface trace is highlighted by springs. It is also apparent that:
 - the older fan has been significantly degraded south of Pringles Creek.
 - · fault scarp heights are small to negligible.

Perhaps only the most recent deformation phase has been preserved here.

 South of a point 300m south of Pringles Creek there has been extensive landsliding which has obliterated any pre-existing fault traces (Photo 1).

In <u>summary</u>, the fault scarp is evident on both sides of Pringles Creek but it does not disrupt the channel perimeter. As well as can be projected, the trace will cross the channel just upslope from the apex of the "Village Terrace" fan i.e. approximately in the centre of the large radius bend. The time of last movement has not been assessed.

Item 3: Sources, Movement and Aggradation of Stream Sediment

a) Sediment Sources

Although there is some potential for erosion of stream channel margins below RL800, most potential sources of sediment in Pringles Creek lie within the steep, upper basin. In the latter area I have both visually and photogeologically defined (Fig. 2):

- i/ an apparently creeping slide mass in the central gully area; toe at RL920, crest at RL1220 (Photos 2, 3, 5).
 From a photo in an ORC memo, supplied by Lamorna Cooper, I understand this feature is called the Arcadia Slip. No maps have been supplied so I cannot compare absolute boundaries.
- ii/ an extensive slide area on the lower to mid section of the north flank of the Pringles Creek basin. Various lobes and degrees of activity. Some potential for relatively small debris flows – my assessment.
- iii/ multiple slides feeding into the upper reach of the Arcadia Slide. Not particularly active.
- iv/ an incipient failure in schist, incorporating a spur in the central basin, with the upper limit of distress at RL1700, approximately. No perceived debris flow potential.
- v/ irregular, small failures in the road switchback area of the south flank of the basin. Minimal debris flow potential.

From comment in the April 2006 "Snow Making Pond" report (supplied), plus notes provided by Lamorna Cooper, I interpret the contentious pond is sited in a pre-existing depression, near the south fringe of the basin, at RL1550-1560. The inference from the ORC

publications is that the dam itself would be sited on a landslide, with a large areal extent, and that there is potential for mass movement on the slope above which puts the pond at even greater risk of failure. (I also note there is a geotechnical report by Jeff Bryant, which I haven't seen.) Information supplied suggests the pond site is on the Scum Valley Landslide, but I may be in error, here, especially as I have not visited the area.

My interpretation of the geology at and near the ponds site is that there are several glacial cirques on the upper slopes, one of which will be effectively occupied by the pond. While indeed there is an apron of debris on the downslope side of the depression, and there may be local erosion on the outer edge of the apron, the mass will be clastic, glacial till, which should not be debris flow prone.

In summary, I assess:

- the proposed pond is within a cirque glacier moraine loop. No debris flow potential.
- a landslide on the valley axis in the lower basin appears to be creeping and have some debris flow potential. (But not as a result of dam leakage.)
- landslides on the north flank of the basin also have limited debris flow potential during storm events.

b) Sediment Movement and Aggradation

Recent storm events, such as that in November 1999, have had no significant influence on the active channel and no impact at all on the broad floodplain downstream from the Skifield Road crossing. It can be assumed, therefore, that:

- i/ no debris flows were generated.
- ii/ existing landslides are not particularly susceptible to debris flows, either in part or as a whole.

And the question can be asked as to whether any debris flows of significance have actually passed down the central and lower reaches of Pringles Creek since it has been in its degradational phase; also whether similar conditions have occurred even within the present inner gorge, which is clearly the youngest morphological feature. My view is that debris flows have probably occurred but they would have been small at mid reaches of the lower half of the catchment, which actually has a low channel gradient (Fig. 3b). The scattered boulders along and near the channel cannot be used as a guide, as they may be merely a lag from the erosion of the last fluvioglacial fan, and there is no unequivocal evidence of aggradation in the channel segment that I saw.

The ORC report (April 2006) has assessed debris flow impacts assuming a range of scenarios, including a rapid failure of the pond during a rainstorm event. Assuming a debris flow can actually be generated on the Arcadia Slip area, the analysis defines a worst case situation as having a 150,000m³ volume, travelling at 3.5m/sec. and passing debris at 91m³/sec. While the Skifield Road would be destroyed at the crossing, the diminished gradient and widening floodplain further downstream will cause debris deposition and a termination of the debris flow before reaching the floor of the main valley. Levels of peak flow at different segments in the catchment have been plotted and it is informative that all are within the inner gorge and only to about 2m above the channel thalweg downstream from the road crossing. No incursion onto the flood plain is depicted.

One assumes a certain amount of aggradation will occur as a consequence of the debris flow event but most detritus should be rapidly removed from the inner channel during normal stream functions. Boulders may cause some aggradation of a more permanent nature. In <u>summary</u>, I conclude the modelling undertaken as part of the ORC dambreak report is sensible, with end results fitting observations in the existing Pringles Creek channel/floodplain complex. A worst case scenario would generate a maximum flood/debris flow level 2m above the channel thelweg downstream from the bridge crossing and a limited amount of aggradation will occur in the inner channel as a consequence.

Item 4: Risk of Aggradation and Overflow at the Pringles Creek Bend

Pringles Creek, on the left bank, is flanked by an assessed fluvioglacial deposit that has a surface tread variously grading to the east and south-east (Fig. 3a). At the apex of the ("Village Terrace") fan there appears to be a remnant of the primary aggradational surface which is slightly higher, and less channelled, than the clearly degraded equivalent that forms most of the fan surface and the area marginal to Pringles Ck. (Photo 2).

The right margin, and marginal strip, of the fan is obviously a key feature in the overflow hazard scenario and I measured some sections, in a simple way, to illustrate channel geometries. An identified most susceptible left bank position was located just downstream from the fan apex (Section 1 on Fig. 3a) and a couple of other sections (Sections 2 and 3) were measured as well. It should be noted that the ORC Report Section 1130 corresponds closely with Section 1 while ORC 1020 and Section 3 are near each other.

- a) The deeply incised floodplain (6m below fan margin) and active stream channel (almost 5m below floodplain) on Section 1.
- b) Even more deeply incised profiles on Sections 2 and 3, relative to the fan margin.
- a) The large cross sectional area for each section below the level of the fan margin.
- d) On ORC Section 1130, a modelled 2m rise in fluid level in the stream channel during the peak flow for a worst case scenario involving a simultaneous rainstorm and dam break. When the overall channel dimensions are considered this is a negligible impact.

Further Comment:

- a) A catastrophic slope failure in the catchment leading to a major debris flow in Pringles Creek cannot be precluded in the future. However, one hasn't occurred to a level of intruding onto the "Village Terrace" fan in the last 23,000 years so the risk of it occurring in the life of the proposed development is assessed as extremely low.
- b) The risk of a moderate sized debris flow even exiting the inner channel of Pringles Creek at "The Bend" in the next 50 years or so is also assessed as low when considering:
 - the ORC modelling.
 - the rather low channel gradient downslope from the road crossing.
 - the broad floodplain upstream from The Bend, which will substantially reduce velocities and allow appreciable sediment deposition.
- c) My intuition also indicates a flood or debris flow won't overtop the left bank along the fan margin, even allowing for surging. As illustrated by Photos 4 and 5, the overall channel is very wide and generally deep and The Bend is, in reality, a large radius curve.
- d) The ORC continues to have residual flood and debris flow concerns, including the risk to the "Village Terrace" fan development. I had a discussion with Lamorna Cooper, who also supplied memoranda of March and May vintage, and it transpired that her main concern regarding a left bank breach was the apparent presence of a "switching point" (new term to me) between ORC Cross Sections 850 and 1020. "At this junction the freeboard on the true left reduces to ca. 1.5m." The high level dam is considered to exacerbate the risk compared with the existing condition.

Lamorna's area of concern lies more-or-less at my Section 3, where there is a deeply incised active channel at the left of the broad valley. One point she raised was an initial valley floor aggradation phase which would diminish the superelevation on the left at the time of the flood/debris flow wave. But, the latter will be at the front of the flow and will pass down an unaffected channel, so there will be no precursory aggradation, in my opinion.

I believe continuing dialogue with the ORC, perhaps with some dedicated cross sections being constructed at key localities, may easily resolve the issue of "Village Terrace" fan

inundation without resorting to remedial works such as embankment construction.

Item 5: Incremental Hazarda for Kidson Development Model

a) Flooding

As previously discussed, the flood/debris flow hazard to the "Village Terrace" fan from an event traversing Pringles Creek has essentially been negated by the ORC Dambreak Report that can, in turn, be diminished in impact terms if it is accepted the dam location is within a cirque moraine rather than on a landslide. ORC staff have a residual issue with one small section of the Pringles Creek channel, however, and this needs further prudent attention. Assuming a positive outcome here, I cannot perceive any difference in flood hazard and risk from the creek to either the existing Rural Visitor Zone or the enlarged Kidson version (Attachment 1).

There are surface flows on the upper "Village Terrace" fan that need to be considered, however. These include groundwater seepages in the Upper Terrace Escarpment and limited runoff from the terrace above the scarp. These either intrude, or potentially intrude, into the north-west quadrant of the "Village Terrace" (Attachment 2) from where they will be directed to the north-east to the creek that runs down Homestead Valley. Attachment 1 contours in this area depict a shallow basin on the fan which will be a subcatchment. As the enlarged Rural Visitor Zone will be entirely to the east of this catchment no hazard and risk

from surface flooding should result.

b) Faulting

The Upper Terrace Escarpment brackets the indicated fault scarp which:

- i/ has a slightly uncertain trace position.
- ii/ reflects probable multiple events, an individual one of which will have a likely maximum throw of 2 - 3m.
- iii/ could have a zone of deformation rather than a single plane.
- iv/ is west-side-up on a presumed west-dipping fault.
- v/ is due to a fault strand that has an uncertain relationship to the regionally persistent NW Cardrona Fault Zone. Perhaps it is the master fault.

Irrespective of these uncertainties there is no evidence that the "Village Terrace" fan has been tectonically deformed since its formation - assessed as 23,000 years BP - nor has the assessed 140,000 year old fan that caps the ridge to the north been deformed apart from the one distinctive scarp at RL660 approximately. On the basis of these interpretations the "Village Terrace" fan as a whole is assessed as having a very low to extremely low risk of tectonic deformation in the lifetime of the proposed development, apart from, perhaps, the

fan apex. As both the assumed existing Rural Visitor Zone and the Kidson enlargement are well away from the existing fault scarp they will be equally in the same risk category and be affected by the same levels of future seismic shaking.

c) Landsliding

The southern half of the Upper Terrace Escarpment is affected by landsliding, the toe zone of which locally extends to below the water race. Mobility is influenced by groundwater seepages but movement rates are clearly low.

It is assumed that there will be an increase in the size of the landslide toe zone, should rupture again occur on the fault in the life of the proposed development, but the wet margin of the enlarged Kidson zone lies 450m away from the present toe and should not be adversely affected by future slide enlargement.

Conclusions

- a) Both the existing Rural Visitor Zone, and its proposed enlargement, span a fan/gully complex just west of the Cardrona River. The various prominent surfaces are attributed to aggradation caused by both regional glacial events and the contemporaneous development of small valley glaciers on the flanks of Mt. Cardrona.
- b) The surface of the fan to the north of lower Pringles Creek ("Village Terrace"), on which development is proposed, has an assessed 23,000 year age. The remnant surface at higher levels to the north has an assessed minimum age of 140,000 years.
- c) A north-south-trending fault disrupts the older fan approximately 800m west of the present Visitor Zone and 600m west of the proposed enlargement. The fault is west-side-up, has indicated multiple phases of post 140,000 year movement, and has an uncertain relationship to the master fault in the NW Cardrona Fault Zone. Timing of the last movement event is uncertain as the projected trace will lie just to the north-west of the "Village Terrace" fan.
- d) Concerns have been expressed by the Otago Regional Council with respect to the potential for Pringles Creek to overtop its left bank in the lower reach and flow down the "Village Terrace" fan to the proposed development area during a major flood or debris flow event. The latter includes a rapid release from a proposed pond on the skifield, which would exacerbate the hazard.
 However, modelling of a worst case scenario Pringles Creek flow indicates only a minimal rise in the level of the creek in the active channel will occur at key stations. As the active channel constitutes only a small fraction of a wide, high sided valley incision that adjoins the "Village Terrace" fan, the risk of channel overtopping and stream avulsion on the left bank is considered to be effectively zero for perceived sensible events in the upper catchment.
- e) This study concludes the proposed snowmaking pond is sited within a cirque moraine, rather than a landslide mass as previously interpreted. A diminution of the risk of dam failure as a consequence will have a beneficial influence on flood or debris flow risks in the lower catchment.

f) Expanding the proposed Rural Visitor Zone on the "Village Terrace" fan, as per the Kidson concept, should not incrementally increase the risk factors from flooding/debris flows, direct displacement by faulting, or landsliding in the development area.

I trust the various discussions on requested items are informative and pertinent. Personally I don't foresee significant geotechnical hazards in the proposed development area but items such as the more regional extent of faulting have not been addressed for this report and there are ongoing elements of the study by ORC of Pringles Creek hazards which have yet to be concluded; a timeframe for this aspect is unknown.

Regards

Feature and Location	Age (yrs. BP)	Glaciation	Comment			
"Village Terrace" fan surface, north of Pringles Creek (Photos 7, 8).	23,000	Otira	Profile on outer edge fan; close to proto Cardrona River surface.			
Skifield Road remnant terrace by pine trees. (Photo 1)	≥140,000	Waimea	Surface faulted on road west of pine trees.			
Faulted fan south of Pringles Creek Bend (Photos 1, 4)	≥140,000	Waimea	Same surface as Skifield Road, above.			
Nominal moraine, north side of 300,000 Waimaunga Equivalent likely on south s Pringles Creek, RL830		Equivalent likely on south side of Pringles Creek.				
Cirques in head of Pringles Creek	≤1,000 yrs?	Otira	Probably multiple occupancy phases in 'recent' times.			

<u>Table 1</u> Assessed ages for surfaces near the proposed development area.

Captions for photos illustrating hazard sources and fan surfaces.

Nbr

Description

- 1 Looking west to the Pringles Creek catchment and some nearby geomorphic features.
- Head basin of Pringles Creek catchment Creeping landslide mass at centre.
- 4 View up Pringles Creek. Note:
 - a) edge of "Village Terrace" at centre right.
 - b) very wide floodplain with stream incised right of centre.
 - c) fault scarp, upper left.
- 5 View up Pringles Creek. Note:
 - a) large, glaciated basin at head.
 - b) wide floodplain in foreground.
 - c) fault scarp, lower left.
 - d) landsliding at right of centre.
- 6 Looking south along fault scarp from the \$kifield Road terrace remnant. Note:
 - a) steep slope in foreground is the northernmost fault scarp.
 - b) road just beyond fence.
 - c) estimated 10 15m throw on fault.
 - d) surface trace probably mid height of scarp.
- 7 Looking south-west across much of the "Village Terrace" fan (at left of centre) and faulted higher terrace at night.
- 8 Looking WSW across "Village Terrace" fan. It grades out to an indicated proto Cardrona River surface behind the pine trees at left.

Fig. 3b
Geological Cross Section AA

Scale 1 1000 H = V